Reach Us +441414719275
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.


Quantitative Structure-Activity Relation Study of Quaternary Ammonium Compounds in Pathogen Control: Computational Methods for the Discovery of Food Antimicrobials

Objective: Quaternary ammonium compounds (QACs) are surfactants that are made of at least one cationic nitrogen attached to a variety of different side groups, usually consisting of one or more hydrophobic chains. These compounds are generally used for surface decontamination, oral hygiene, and recently in carcass preservation. Recently there have been many studies that have implicated QACs in the development of resistance in bacteria as well as harmful environmental effects. One compound in particular, cetylpyridinium chloride (CPC), has recently gained acceptance as a safe and practical method for use in consumable raw poultry product decontamination. This compound is highly lipophilic and leaves a residue that is potentially toxic to consumers and the environment if not properly removed.

Methods: Using computational methods, we propose the use of quantitative structure-activity relation (QSAR) analysis to determine the antimicrobial effects of novel and untested QACs and QAC-like, structures for further testing.

Results: We developed a consensus model with an R2 and a slope of 0.98, which shows good linear structure of its predictions of minimum inhibitory concentration (MIC). This model was validated by prediction of known antimicrobial data of QACs. Similar compounds to CPC were collected and their antimicrobial effects were predicted by this model. Many of these compounds were detected as possible antimicrobials.

Conclusion: This study has identified several promising antimicrobial compounds worth of further study. By diversifying the available QACs we hope to develop better disinfectants, create more environmentally friendly compounds, and help to stall, or even halt, the development of antimicrobial resistance.


Ethan C Rath and Yongsheng Bai

Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+
Flyer image

Abstracted/Indexed in

  • Chemical Abstracts Service (CAS)
  • Index Copernicus
  • Google Scholar
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • WorldCat
  • Geneva Foundation for Medical Education and Research
  • Secret Search Engine Labs