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Background
Bacterial	infection	on	the	surface	of	fresh	meats	and	produce	after	
processing	 is	 currently	 one	 of	 the	 largest	 problems	within	 this	
industry.	Bacteria	that	cause	most	foodborne	illness	and	include,	
but	are	not	 limited	to,	shiga	toxin	producing	Escherichia coli (E. 
coli)	and	Salmonella typhimurium (S. typhimurium)	[1,2].	Not	only	

Received: May	27,	2016; Accepted: June	20,	2016;	Published: June	25,	2016

Abstract
Objective: Quaternary	 ammonium	 compounds	 (QACs)	 are	 surfactants	 that	 are	
made	of	at	least	one	cationic	nitrogen	attached	to	a	variety	of	different	side	groups,	
usually	 consisting	 of	 one	 or	 more	 hydrophobic	 chains.	 These	 compounds	 are	
generally	used	for	surface	decontamination,	oral	hygiene,	and	recently	in	carcass	
preservation.	Recently	there	have	been	many	studies	that	have	implicated	QACs	
in	 the	development	of	 resistance	 in	bacteria	 as	well	 as	harmful	 environmental	
effects.	One	compound	in	particular,	cetylpyridinium	chloride	(CPC),	has	recently	
gained	 acceptance	 as	 a	 safe	 and	 practical	method	 for	 use	 in	 consumable	 raw	
poultry	product	decontamination.	This	compound	is	highly	lipophilic	and	leaves	a	
residue	that	is	potentially	toxic	to	consumers	and	the	environment	if	not	properly	
removed.

Methods:	 Using	 computational	 methods,	 we	 propose	 the	 use	 of	 quantitative	
structure-activity	relation	(QSAR)	analysis	to	determine	the	antimicrobial	effects	
of	novel	and	untested	QACs	and	QAC-like,	structures	for	further	testing.	

Results: We	developed	a	consensus	model	with	an	R2	and	a	slope	of	0.98,	which	
shows	good	linear	structure	of	its	predictions	of	minimum	inhibitory	concentration	
(MIC).	 This	model	 was	 validated	 by	 prediction	 of	 known	 antimicrobial	 data	 of	
QACs.	Similar	compounds	 to	CPC	were	collected	and	their	antimicrobial	effects	
were	 predicted	 by	 this	 model.	 Many	 of	 these	 compounds	 were	 detected	 as	
possible	antimicrobials.	

Conclusion: This	study	has	identified	several	promising	antimicrobial	compounds	
worth	of	 further	 study.	By	diversifying	 the	available	QACs	we	hope	 to	develop	
better	disinfectants,	create	more	environmentally	friendly	compounds,	and	help	
to	stall,	or	even	halt,	the	development	of	antimicrobial	resistance.

Keywords: Quantitative	 structure	 activity	 relations;	 Chemoinformatics;	
Disinfectant;	 Cetylpyridinium	 chloride;	 Quaternary	 ammonium	 compounds;	
Antimicrobial;	 Minimum	 inhibitory	 concentration;	 Computational	 chemistry;	
Surfactant
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do	these	bacteria	cause	disease,	but	also	spoilage.	It	is	estimated	
that	in	2010	the	United	States	of	America	threw	out	133	billion	
pounds	of	food,	mostly	due	to	spoilage	[3].	These	bacteria	cannot	
be	 removed	 by	 simple	 water	 spraying	 implemented	 by	 most	
processing	 facilities	 [4].	As	 such,	many	 technologies	have	been	
developed	to	combat	bacteria	on	the	surface	of	food	products.	
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These	technologies	involve	the	use	of	chlorine,	chlorine	dioxide,	
Salimide,	ozone,	and	cetylpyridinium	chloride	[5-9].

Unfortunately,	 the	 current	 technologies	 being	 used	 to	 remove	
bacteria	 from	 these	 surfaces	 suffer	 from	 a	 variety	 of	 issues:	
high	 cost,	 hazardous	 byproducts,	 environmental	 hazards,	 and	
the	 discoloration	 of	 products	 [9,10].	 This	 study	 focuses	 on	 the	
use	of	cetylpyridinium	chloride	(CPC)	 for	decontamination.	CPC	
is	an	effective	antimicrobial,	 it	has	been	approved	only	 for	use	
on	raw	chicken,	although	it	has	also	shown	effectiveness	for	use	
on	beef	and	produce	for	both	disinfection	and	the	extension	of	
shelf	 life	 [11-13].	 CPC	 is	 classified	 as	 a	 quaternary	 ammonium	
compound	(QAC),	which	is	defined	by	its	cationic	nitrogen	head.	
Generally	 QACs	work	 as	 antimicrobials	 by	 disrupting	 cell	 walls	
and	 membranes	 with	 hydrophobic	 tails.	 These	 tails	 pinch	 off	
sections	 in	 small	 vesicle-like	 structures	 and	 cause	 cell	 leakage	
that	eventually	leads	to	cell	death	[14-16].	CPC	follows	this	same	
mechanism	along	with	 evidence	of	 other	more	 specific	 targets	
including	 transferrin	 denaturation,	 ionic	 channel	 blocking,	 and	
knock-down	of	halitosis	specific	transcription	factors	[14,17,18].

It	 does,	 however,	 have	 its	 own	flaws.	 CPC	 is	 an	 environmental	
hazard	and	leaves	a	toxic	residue	on	surfaces	[13,19].	This	residue	
is	 dissolved	 and	 subsequently	 removed	 using	 propylene	 glycol	
(PEG)	as	a	cosolvent	with	water.	Unfortunately,	this	adds	to	the	cost	
and	complicates	the	safe	disposal	of	CPC	[20].	Environmentally,	
the	disposal	of	CPC	is	a	major	concerning	factor.	CPC	is	naturally	
broken	down	by	bacteria,	but	in	higher	concentrations	it	kills	the	
bacteria	 before	 it	 can	 be	 processed.	 In	 aquatic	 environments	
residual	CPC	causes	a	decrease	in	microflora	and	in	algae	blooms.	
This	decrease	causes	a	trophic	cascade,	negatively	impacting	all	
organisms	in	the	local	community	[21].	The	remnants	of	CPC	in	
the	environment	can	also	propagate	antimicrobial	 resistance	 in	
the	 local	microbial	 communities,	which	 can	 also	have	 a	 lasting	
impact	 [22].	 In	 humans,	QACs	 taken	 orally	 in	 high	 doses	 (100-
400	mg/kg)	 have	 shown	 detrimental	 effects	 including	mucosal	
necrosis,	 hemorrhaging,	 formation	 of	 ulcers,	 and	 severe	 liver,	
kidney,	 and	 heart	 changes	 [23,24].	 CPC	 in	 particular	 has	 been	
shown	to	cause	liver	and	kidney	vacuolization	as	well	as	paralysis	
when	given	orally	to	rats	and	rabbits	[25].

Discovery	of	novel	drugs	is	typically	limited	by	the	funds	available	
and	the	precise	knowledge	of	drug	targets.	Due	to	the	nonspecific	
nature	of	CPC	and	imprecise	library	screening	methods,	our	lab	
turned	to	qualitative	structure	activity	relationships	(QSAR).	QSAR	
allows	 for	 the	 recoding	 of	molecular	 structures	 to	 quantifiable	
forms	which	are	then	correlated	to	a	specific	biological	activity.	
This	model	can	then	be	used	to	predict	the	biological	activity	of	
untested	structures	[26].	The	bioactivity	that	we	wish	to	study	is	
the	minimum	inhibitory	concentration	(MIC),	which	is	a	measure	
of	 the	 effectiveness	 of	 an	 antimicrobial.	 A	 lower	MIC	 denotes	
a	 more	 effective	 compound.	 Using	 this	 method	 we	 hope	 to	
discover	potential	structures	that	could	function	as	well	as	CPC,	
with	reduced	or	nonexistent	negative	effects	on	the	human	body	
and	the	environment.

Methods
Data collection
Three	sections	of	data	were	collected	via	literature	searches	(1)	a	
model	building	set,	(2)	a	validation	set,	and	(3)	a	prediction	set	of	

compounds	[27-29].	The	model	building	set	was	based	on	known	
QACs	with	data	on	the	MIC	of	these	compounds	against	E. coli. 
Contained	within	the	validation	set	were	known	QACs	that	were	
not	used	for	the	model	building	set.	Compounds	for	the	prediction	
set	were	collected	from	a	substructure	search	on	Pubchem	using	
CPC	as	a	reference.	The	top	1000	compounds	sorted	by	relevance	
were	selected	for	further	testing.

Descriptor calculation
All	descriptors	for	the	model	building	set	(Supplemental	Data	1),	
the	validation	set	(Supplemental	Data	2),	and	the	prediction	set	
(Supplemental	Data	3)	were	calculated	simultaneously	using	the	
ochem.eu	chemical	database	[30].	Using	the	tools	on	this	site,	the	
structures	were	 cleaned	by	 removing	 the	 salts	 associated	with	
each	 compound.	 Under	 the	 models	 tab,	 calculate	 descriptors	
program	was	selected	and	the	SMILES	string	for	each	compound	
was	uploaded	in	an	Excel	file	(.xls).	These	SMILES	were	used	to	
calculate	descriptors	through	this	database.	The	descriptors	that	
were	selected	are	the	following:	E-state	(all	but	extended	indices),	
ALogPS,	 GSFragments,	 ISIDA	 fragments	 (from	 2-15	 in	 order	
to	 cover	 long	 carbon	 chains),	 and	 QNPR.	 These	were	 selected	
due	 to	 a	 large	 number	 of	 compounds	 encountering	 errors	
during	 3D	 structure	 calculations.	 Unless	 noted,	 all	 descriptors	
were	 left	 at	 the	 default	 settings.	 This	 totaled	 1356	 descriptors	
for	 each	 compound.	 The	 descriptors	 and	 the	 chemID’s	 were	
then	 downloaded	 as	 a	 .cvs	 file	 ignoring	 any	 compounds	 that	
encountered	an	error.	The	model	building	set	and	the	validation	
set	had	no	errors	and	163	compounds	were	removed	from	the	
prediction	set	due	to	errors	in	calculation.

Data preprocessing
After	the	descriptors	were	calculated,	all	data	were	normalized	
through	 the	 Normalize	 Data	 (v.1.0)	 tool	 developed	 by	 the	 Roy	
lab	 [31].	 This	 is	 a	 Java	 program	 that	 requires	 a	 .csv	 file	 of	 the	
descriptors.	The	model	building	set	data	was	then	split	into	a	test	
(15%)	and	training	set	(85%)	via	the	Data	set	Division	GUI	(v.1.2)	
also	developed	by	 the	Roy	 labs	 [32,33]	 (http://teqip.jdvu.ac.in/
QSAR_Tools/#ADInHouse).

QSARINS model calculation
Using	QSARINS,	an	open	source	QSAR	modeling	software	utilizing	
multiple	 linear	 regression	 (MLR),	was	used	 to	 create	 the	QSAR	
model	and	to	generate	each	prediction	[34,35].	First,	the	model	
building	 set	 was	 altered	 to	 fit	 the	 QSARINS	 format.	 The	 MIC	
was	 then	 added	 to	 the	 descriptors	 column	 and	 the	 test	 and	
training	 sets	were	 combined	 into	 a	 single	 file	where	 each	was	
given	 a	 numerical	 identifier	 (1	 for	 training	 set,	 2	 for	 test	 set)	
in	 the	 last	 column	of	 the	file.	This	was	 saved	as	a	 .txt	file.	The	
software	was	run	according	to	the	protocol	listed	in	the	manual.	
We	used	their	internal	filters	to	remove	all	descriptors	that	had	
<80%	 consistency	 throughout	 the	 data	 set,	 or	 that	were	 <95%	
correlated.	The	genetic	algorithm	was	run	for	combinations	of	up	
to	130	descriptors	based	on	the	Q2loo.	840	models	were	created,	
using	 QSARINS	 available	 validation	 data.	 An	 arbitrary	 cutoff	 of	
R2>0.75,	R2-Q2<0.10	(both	loss	of	one	and	loss	of	many),	and	|Q2	-	
Y-scramble|	>	0.50	was	used.	Twelve	models	were	left	for	further	
validation.	Predictions	 for	 the	prediction	 set	and	 the	validation	
set	were	performed	using	the	built-in	tool.	(http://www.qsar.it/).
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Results
Model validation
In	 order	 to	 find	 a	 new	 chemical	 to	 treat	 meat	 surfaces,	 we	
performed	 a	 literature	 search	 for	 current	 QACs	 and	 their	
respective	MIC	against	E. coli	 [27-29].	 The	compounds	 that	we	
found	 had	 at	 least	 one	 cationic	 nitrogen	 and	 a	 carbon	 chain.	
Other	commonly	identified	structures	include	nitrogen,	oxygen,	
benzene	rings,	and	even	barium	in	one	compound.	Activities	of	
these	 compounds	 range	 from	 an	MIC	 of	 1.88	 μg/ml	 to	 12800	
μg/ml.	 Using	 all	 available	 literature	 data	 on	 the	 antimicrobial	
activity	 of	 currently	 available	 QACs	 on	 E. coli	 represented	 by	
the	 log	 of	 the	MIC,	 we	 developed	 840	 potential	models	 using	
the	 QSARINS	 software.	 QSARINS	 systematically	 uses	 optimized	
descriptors	to	build	models	starting	at	1	descriptor	and	building	
more	 complex	models	 using	 a	 genetic	 algorithm	 (GA).	 The	 GA	
organizes	the	descriptors	into	genes	in	a	chromosome	and	then	
other	 descriptors	 are	 substituted	 into	 this	 chromosome.	 This	
continues	with	a	constant	mutation	rate	for	500	generations.	At	
the	end	of	these	generations	each	chromosome	is	used	to	create	
an	MLR	based	QSAR	model.	The	top	five	models	(determined	by	
the	Q2loo)	are	kept	for	each	iteration.	The	number	of	descriptors	
is	increased	as	time	progresses	and	more	calculations	are	done.	
Due	 to	 computing	 limitations,	 this	process	was	 stopped	at	130	
descriptors,	although	most	optimal	models	had	fewer	than	eight	
descriptors.	The	top	models	had	some	descriptors	in	common,	or	
at	least	very	similar	fragments.	The	H-C-O	structure	fragment	was	
seen	in	10	of	the	top	12	models.	We	organized	these	descriptors	
into	 four	 categories	 to	explain	 the	 importance	of	 certain	 types	
of	 descriptors	 for	 this	 model	 calculation:	 (1)	 short	 fragments	
(specific	 fragments	 of	 five	 atoms	 or	 less),	 (2)	 long	 fragments	
(specific	 fragments	 of	 more	 than	 five	 atoms),	 (3)	 non-specific	
fragments	 (fragments	 with	 general	 patterns	 and	 not	 specific	
structural	 identities,	 examples	 include	 C*C*N:(Fragmentor)	 in	
which	 “*”	 could	 be	 any	 atom),	 and	 (4)	 log	 of	 the	 lipophilicity	
which	was	calculated	by	A*log(PS)	(Table 1).

In	 order	 to	 select	 the	 best	 potential	 models	 from	 the	 840	
potential	models,	a	general	filter	of	R2>0.75,	R2	-	Q2<0.10,	and	|Q2 
-	Y-scramble|	>0.50	was	used	to	reduce	the	 list	 to	12	potential	
models	based	on	 internal	validation	calculations	done	with	 the	
QSARINS	 software	 (Table 2).	 The	majority	 of	 compounds	were	
removed	due	to	the	R2	-	Q2	filter.	An	external	testing	dataset	was	
then	 predicted	 by	 the	 model	 in	 order	 to	 perform	 an	 external	
validation.	For	 this	 study	we	 focused	on	 the	general	prediction	
ranking	(R2)	and	the	specific	accuracy	of	our	prediction	(percent	
error).	 These	 were	 calculated	 and	 are	 displayed	 in	 Table 3.	 It	
is	 typical	 in	 the	QSAR	 community	 to	 rely	more	 on	 the	 general	
predictive	 ranking	 than	 to	 rely	 on	 accuracy	 alone,	 as	 these	

predictions	will	be	used	for	filtering	a	larger	list	for	experimental	
validation	 rather	 than	 for	 direct	 prediction	 [36].	 Many	 of	 the	
models	were	very	similar	in	their	validations,	therefore	the	most	
optimal	model,	 81,	was	 selected	 to	provide	 an	example	of	 the	
internal	and	external	regressions	(Figures 1 and 2).

Many	 studies	 have	 pointed	 to	 the	 effectiveness	 of	 using	 a	
consensus	model	 for	 increasing	 the	 accuracy	 of	 the	 prediction	
of	 unknown	models,	 rather	 than	 using	 a	 single	model	 [36,37].	
Using	 the	 twelve	 previously	 identified	 models,	 we	 averaged	
the	predictions	on	the	validation	set	 to	develop	three	different	
consensus	models	(Table 2 and Figure 3).	One	model	was	created	
from	 all	 available	 models.	 The	 second	 was	 made	 by	 selected	
models	that	had	a	R2>0.9	and	an	average	error	<20%.	The	third	
consensus	was	 formed	by	 removing	model	65.	 This	model	had	
the	worst	external	validations	with	an	R2	of	0.19	and	an	average	
error	of	72%.	These	consensus	models	generally	had	lower	error	
and	 higher	 R2	 than	 the	 single	 models.	 The	 removal	 of	 lesser	
models	or	the	single	worst	model	did	not	improve	the	accuracy	
of	the	consensus.	From	the	validation	data	we	determined	that	
the	 consensus	 model	 made	 from	 all	 the	 available	 models,	 as	
previously	described,	would	be	the	preliminary	optimized	model	
to	use	for	predictions	of	unknown	compounds.	

Model ID Variables
Short	Fragments 20
Long	Fragments 10

Non-specific	Fragments 20
Log(lipophilicity) 4

Table 1	Classification	of	Descriptors	used	in	prediction	calculation.

Model ID Variables R2 R2-Q2
loo

94 7 0.838 0.0802
82 5 0.8116 0.0659
81 5 0.8024 0.0713
72 4 0.7933 0.0741
70 4 0.7929 0.0813
75 5 0.789 0.079
69 4 0.7877 0.0816
67 4 0.7656 0.0713
63 4 0.7651 0.0765
66 4 0.76 0.0681
64 4 0.7585 0.0685
65 4 0.7576 0.0675

Table 2	Internal	Validation	of	Select	12	QSAR	models.

Model ID Average % Error R2

94 14% 0.8917
82 14% 0.9274
81 11% 0.9578
72 24% 0.8804
70 22% 0.8828
75 19% 0.8566
69 25% 0.8081
67 18% 0.9101
63 16% 0.9242
66 20% 0.8772
64 14% 0.9254
65 72% 0.1967

Consensus	(all) 9% 0.971
Consensus	(selected) 10% 0.9439

Consensus	(worst	removed) 13% 0.9315

Table 3	External	Validation	of	Select	13	QSAR	models.
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Find training set, validation set,
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each compund using the 
correlations of the other
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(QSARINS)

Calculate descriptors for each
compound
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Normalize data and split into
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(normalizeData & 
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Correlate descriptors with MIC
of each compound

(QSARINS)

Predict MIC for non-training set
compounds
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Generate measured vs predicted
curve
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Flow	chart	of	the	QSAR	building	process,	with	software	used	at	each	step.Figure  1
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Figure 2 The top QSAR model based on the R2 values for the predictions of the external validation set. A) Model 81 training and 
prediction set regression, the training set is in yellow and the prediction is in blue. B) Model 81 external validation regression, the 
R2 is displayed on the graph.
Figure  2 The	top	QSAR	model	based	on	the	R2 values	for	the	predictions	of	the	external	validation	set.	A)	

Model	81	training	and	prediction	set	regression,	the	training	set	is	in	yellow	and	the	prediction	
is	in	blue.	B)	Model	81	external	validation	regression,	the	R2 is	displayed	on	the	graph.
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Compound Predicted MIC (μg/ml) Compound Predicted MIC (μg/ml)

0.969267 1.077558

1.016167 1.083292

1.016167 1.097142

1.043917 1.101175

1.071908 1.118575

Table 4	Top	10	potential	compounds,	determined	by	predicted	MIC.



2016
Vol. 2 No. 1: 3

6 This article is available in: www.cheminformatics.imedpub.com/archive.php

Chemical informatics
ISSN 2470-6973

Predictions for unknown compounds
The	purpose	of	creating	a	QSAR	model	is	to	apply	it	to	previously	
unstudied	 compounds	 with	 unknown	 biological	 activities.	 We	
collected	 a	 list	 of	 1000	 compounds	 from	 PubChem	 that	 had	
substructure	similar	to	CPC	[38].	By	using	the	consensus	model,	
the	 top	 10	 compounds	 in	 terms	 of	 MIC	 against	 E. coli were 
identified.	Compounds	that	were	in	the	applicability	domain	for	at	
least	75%	of	the	models	within	the	consensus	were	included	in	the	
final	 list.	This	left	us	with	39	compounds.	These	compounds,	their	
structures,	and	their	predicted	activities	are	shown	in	Table 4.

Discussion
Using	literature	values,	a	QSAR	model	was	developed	in	order	to	
predict	 the	MIC	of	potential	 compounds	 that	 could	be	used	 to	
combat	bacteria	on	 the	 surface	of	 food	during	processing.	Our	
model	was	based	on	47	compounds	with	available	literature	values	
with	recorded	MIC	values	against	E. coli,	collected	across	three	
different	studies	to	increase	the	variation	of	structures	and	MIC	
values.	Using	the	built	in	GA	the	best	descriptors	and	the	optimal	
number	of	descriptors	were	selected	to	avoid	overtraining	of	the	
model.	 Some	may	 argue	 that	 only	 using	 up	 to	 130	 descriptors	
could	be	a	detriment	to	our	study	but,	any	calculations	done	with	
more	 than	 15	 variables	 there	was	 a	 significant	 decrease	 in	 Q2 
leading	us	to	believe	that	overtraining	had	occurred	beyond	that	
point.

Now	that	we	have	a	viable	QSAR	model	of	MIC	and	preliminary	
predictions	for	almost	900	structures,	we	plan	to	experimentally	
validate	the	predicted	MIC.	After	this	validation	our	lab	will	focus	

on	creating	two	more	models	1)	one	to	predict	the	environmental	
degradation	of	these	compounds	and	2)	one	that	would	predict	
the	 amount	 of	 residue	 that	 would	 be	 left	 on	 different	 food	
products	when	the	compounds	are	used	for	sterilization.	These	
steps	will	help	us	to	discover	a	safer	compound	from	the	list	of	
potential	compounds.

Disinfectants	 in	 the	 food	 industry	 are	 incredibly	 important	
for	 the	 reduction	of	 spoilage	 causing	 bacteria	 as	well	 as	 those	
that	can	cause	disease.	Unfortunately,	 current	 techniques	have	
many	 issues.	 One	 compound	 that	 is	 efficient	 in	 both	 cost	 and	
in	 antibacterial	 action	 is	 CPC,	 but	 the	 remaining	 residue	must	
be	 removed	 or	 the	 products	 could	 become	 toxic.	 In	 order	 to	
find	a	comparable	compound	without	the	toxic	residue,	our	lab	
developed	 a	 QSAR	model	 that	 could	 predict	 the	 antimicrobial	
activity	 of	 potential	 compounds	 before	 experimental	 testing.	
This	model	will	allow	us	and	other	labs	to	save	money	and	time	
by	 specifically	 testing	 compounds	 that	 have	 predicted	 efficacy	
for	 antimicrobial	 behavior.	 By	 developing	 and	 testing	 new	
antimicrobial	QACs	we	hope	to	not	only	reduce	the	bacteria	on	
the	surface	of	food	in	a	safe	manner,	but	also	reduce	the	amount	
of	 antimicrobial	 damage	 to	 the	 local	 environment.	 With	 the	
addition	of	new	QACs	we	also	expect	to	help	combat	the	rise	in	
antibiotic/antimicrobial	resistant	bacteria.

Acknowledgements
Our	 lab	would	 like	to	thank	Hunter	Gill	 for	his	contributions	to	
this	project	and	Dr.	Gary	Stuart	and	Stephanie	Pitman	for	their	
comments	and	edits.

R² = 0.971

R² = 0.9439

R² = 0.9315

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Pr
ed

ic
te

d 
lo

g(
M

IC
) (
μg

/m
l)

Known log(MIC) (μg/ml)

All

Selected

Worst Removed

Predictions	on	an	external	validation,	regressions	of	three	different	consensus	models.	In	
green,	all	available	models	that	met	our	cutoffs,	the	blue	is	all	models	that	had	an	external	
validation	R2 >	0.90	and	an	average	standard	error	<	0.20,	the	yellow	is	a	regression	with	
the	 single	worst	model	 (having	an	R2	of	0.19).	 	 Each	R2	 is	displayed	under	 the	 legend	
heading	for	each	data	set.

Figure  3



2016
Vol. 2 No. 1: 3

7© Under License of Creative Commons Attribution 3.0 License         

Chemical informatics
ISSN 2470-6973

References
1 Berends	BR,	Van	KF,	Mossel	DA,	Burt	SA,	Snijders	JM	(1998)	Impact	on	

human	health	of	Salmonella	spp.	on	pork	in	The	Netherlands	and	the	
anticipated	effects	of	some	currently	proposed	control	strategies.	Int	
J	Food	Microbiol	44:	219-229.

2 Erickson	MC,	Doyle	MP	(2007)	Food	as	a	vehicle	for	transmission	of	
Shiga	toxin-producing	Escherichia	coli.	J	Food	Prot	70:	2426-2449.

3	 Buzby	 JC,	Wells	HF,	Hyman	 J	 (2014)	The	Estimated	Amount,	Value	
and	Calories	of	Postharvest	Food	Losses	at	the	Retail	and	Consumer	
Levels	 in	 the	 United	 States.	 Retrieved	 from	 http://www.ers.usda.
gov/publications/eib-economic-information-bulletin/eib121.aspx 

4	 Bacon	 RT,	 Belk	 KE,	 Sofos	 JN,	 Clayton	 RP,	 Reagan	 JO,	 et	 al.	 (2000)	
Microbial	 populations	 on	 animal	 hides	 and	 beef	 carcasses	 at	
different	stages	of	slaughter	in	plants	employing	multiple-sequential	
interventions	for	decontamination.	J	Food	Prot	63:	1080-1086.

5	 Cutter	C,	Warren	D,	Handie	A,	Rodriguez-Morales	S,	Zhou	X,	et	al.	(2000)	
Antimicrobial	 Activity	 of	 Cetylpuridinium	 Chloride	 Washes	 against	
Pathogenic	Bacteria	on	Beef	Surfaces.	J	Food	Prot	63:	593-600.

6	 Mullerat	 J,	 Klapes	 NA,	 Sheldon	 BW	 (1994)	 Efficacy	 of	 Salmide(R),	
a	 Sodium	 Chlorite-Based	 Oxy-Halogen	 Disinfectant,	 to	 Inactivate	
Bacterial	Pathogens	and	Extend	Shelf-Life	of	Broiler	Carcasses.	J	Food	
Prot	57:	596-603.

7	 Singh	 N,	 Singh	 RK,	 Bhunia	 A	 K,	 Stroshine	 RL	 (2002)	 Efficacy	 of	
chlorine	 dioxide,	 ozone,	 and	 thyme	 essential	 oil	 or	 a	 sequential	
washing	 in	 killing	 Escherichia	 coli	 O157:H7	 on	 lettuce	 and	 baby	
carrots.	 Lebensmittel-Wissenschaft	 Und-Technologie-Food	 Science	
and	Technology	35:	720-729.	

8	 Tsai	LS,	Schade	JE,	Molyneux	BT	(1992)	Chlorination	of	Poultry	Chiller	
Water	-	Chlorine	Demand	and	Disinfection	Efficiency.	Poultry	Science	
71:	188-196.

9	 Wabeck	 CJ	 (1994)	Methods	 to	 reduce	microorganisms	 on	 poultry.	
Broiler	Industry	57:	34-42.

10	 Rule	 KL,	 Ebbett	 VR,	 Vikesland	 PJ	 (2005)	 Formation	 of	 chloroform	
and	 chlorinated	 organics	 by	 free-chlorine-mediated	 oxidation	 of	
triclosan.	Environ	Sci	Technol	39:	3176-3185.

11 Bai	 Y,	 Coleman	 K,	 Waldroup	 A	 (2007)	 Effect	 of	 Cetylpyridinium	
Chloride	(Cecure	CPC	Antimicrobial)	on	the	Refrigerated	Shelf	Life	of	
Fresh	Boneless,	Skinless	Broiler	Thigh	Meat.	International	Journal	of	
Poultry	Science	6:	91-94.

12 Gilbert	 C,	 Bai	 Y,	 Jiang	 H	 (2015)	 Microbial	 Evaluation	 of	 Cecure-
Treated	(Post-Chill)	Raw	Poultry	Carcasses	and	Cut-up	Parts	in	Four	
Commercial	Broiler	Processing	Facilities.	Int	J	Poult	Sci	14:	120-126.

13	 Rodriguez-Morales	 S,	 Zhou	 X,	 Salari	 H,	 Castillo	 R,	 Breen	 PJ,	 et	 al.	
(2005)	 Liquid	 chromatography	 determination	 of	 residue	 levels	 on	
apples	treated	with	cetylpyridinium	chloride.	J	Chromatogr	A	1062:	
285-289.

14	 Gilbert	 P,	Moore	 LE	 (2005)	 Cationic	 antiseptics:	 diversity	 of	 action	
under	a	common	epithet.	J	Appl	Microbiol	99:	703-715.

15	 Ioannou	 C,	 Hanlon	 G,	 Deyner	 S	 (2007)	 Action	 of	 Disinfectant	
Quaternary	Ammonium	Compounds	against	Staphylococcus	aureus.	
Antimicrob	Agents	Chemother	51:	296-306.

16	 Wessels	 S,	 Ingmer	H	 (2013)	Modes	of	 action	of	 three	disinfectant	
active	substances:	A	review.	Regul	Toxicol	Pharmacol	67:	456-467.	

17	 Liu	J,	Ling	JQ,	Wu	CD	(2013)	Cetylpyridinium	chloride	suppresses	gene	
expression	associated	with	halitosis.	Arch	Oral	Biol	58:	1686-1691.

18	 Taheri-Kafrani	 A,	 Rastegari	 AA,	 Bordbar	 AK	 (2014)	 The	 unfolding	
process	 of	 apo-human	 serum	 transferrin	 in	 the	 presence	 of	
cetylpyridinium	chloride:	an	 isothermal	titration	calorimetry	study.	
Acta	Chim	Slov	61:	645-649.

19	 Zhou	 X,	 Handie	 A,	 Salari	 H,	 Fifer	 EK,	 Breen	 PJ,	 et	 al.	 (1999)	 High-
performance	 liquid	 chromatography	 determination	 of	 residue	
levels	on	chicken	carcasses	treated	with	cetylpyridinium	chloride.	J	
Chromatogr	B	Biomed	Sci	Appl	728:	273-277.

20	 Kwak	KY,	Nakata	Y	(1999)	Japan	Patent.	P.	Corp.

21 Tezel	U,	Pavlostathis	SG	(2015)	Quaternary	ammonium	disinfectants:	
microbial	adaptation,	degradation	and	ecology.	Curr	Opin	Biotechnol	
33:	296-304.

22 Buffett-Bataillon	S,	Tattevin	O,	Bonnaure-Mallet	M,	Jolivet-Gougeon	
A	(2002)	Emergence	of	resistance	to	antibacterial	agents:	the	role	of	
quaternary	ammonium	compounds-	a	critical	review.	Int	J	Antimicrob	
Agents	39:	381-389.

23	 Cutler	 RA,	 Drobeck	 HP	 (1970)	 Toxicology	 of	 Cationic	 Surfactants.	
Volume	4.	New	York:	Marcel	Dekker,	Inc.,	USA.

24	 Gosselin	 RE,	 Smith	 RP,	 Hodge	 HC	 (1984)	 Clinical	 Toxicology	 of	
Commercial	Products.	5th	edn.	Balitmore:	Williams	and	Wilkins.

25	 Warren	MR,	Becker	TJ,	Marsh	DG,	Shelton	RS	(1942)	Pharmacological	
and	 Tocicological	 studies	 on	 cetylpiridinium	 chloride,	 a	 new	
germicide.	J	Pharm	Exp	Ther	74:	401-408.	

26	 Silverman	K	(2004)	The	organic	chemistry	of	drug	design	and	drug	
action.	2nd	edn.	Elsevier.

27	 Cook	GK,	McDonald	JH	3rd,	Alborn	W	Jr,	Boyd	DB,	Eudaly	JA,	et	al.	
(1989)	 3-Quaternary	 ammonium	 1-carba-1-dethiacephems.	 J	Med	
Chem	32:	2442-2450.

28	 Thorsteinsson	 T,	 Masson	 M,	 Kristinsson	 KG,	 Hjalmarsdottir	 MA,	
Hilmarsson	H,	et	al.	(2003)	Soft	antimicrobial	agents:	synthesis	and	
activity	 of	 labile	 environmentally	 friendly	 long	 chain	 quaternary	
ammonium	compounds.	J	Med	Chem	46:	4173-4181.	

29	 Zhang	 Y,	 Li	 G,	 Liu	 M,	 You	 X,	 Feng	 L,	 et	 al.	 (2011)	 Synthesis	 and	
in	 vitro	 antibacterial	 activity	 of	 7-(3-alkoxyimino-5-amino/
methylaminopiperidin-1-yl)fluoroquinolone	derivatives.	Bioorg	Med	
Chem	Lett	21:	928-931.	

30	 Sushko	I,	Novotarskyi	S,	Korner	R,	Pandey	AK,	Rupp	M,	et	al.	(2011)	
Online	 chemical	 modeling	 environment	 (OCHEM):	 web	 platform	
for	 data	 storage,	 model	 development	 and	 publishing	 of	 chemical	
information.	J	Comput	Aided	Mol	Des	25:	533-554.	

31	 Mohamad	 IB,	 Usman	 D	 (2013)	 Standardization	 and	 Its	 Effects	 on	
K-Means	Clustering	Algorithm.	Research	Journal	of	Applied	Sciences,	
Engineering	and	Technology	6:	3299-3303.

32	 Kennard	RW,	Stone	LA	(1969)	Computer	Aided	Design	of	Experiments.	
Technometrics	11:	137-148.

33	 Martin	 TM,	 Harten	 P,	 Young	 DM,	Muratov	 EN,	 Golbraikh	 A,	 et	 al.	
(2012)	Does	rational	selection	of	training	and	test	sets	improve	the	
outcome	of	QSAR	modeling?	J	Chem	Inf	Model	52:	2570-2578.

34	 Gramatica	 P,	 Cassani	 S,	 Chirico	 N	 (2014)	 QSARINS-chem:	 Insubria	
datasets	and	new	QSAR/QSPR	models	for	environmental	pollutants	
in	QSARINS.	J	Comput	Chem	35:	1036-1044.

35	 Gramatica	P,	Chirico	N,	Papa	E,	Cassani	S,	Kovarich	S	(2013)	QSARINS:	
A	 new	 software	 for	 the	 development,	 analysis	 and	 validation	 of	
QSAR	MLR	models.	J	Comput	Chem	34:	2121-2132.	

36	 Gramatica	P,	Pilutti	P,	Papa	E	(2004)	Validated	QSAR	prediction	of	OH	
tropospheric	 degradation	 of	 VOCs:	 splitting	 into	 training-test	 sets	
and	consensus	modeling.	J	Chem	Inf	Comput	Sci	44:	1794-1802.

37	 Zhu	 H,	 Tropsha	 A,	 Fourches	 D,	 Varnek	 A,	 Papa	 E,	 et	 al.	 (2008)	
Combinatorial	QSAR	Modeling	of	Chemical	Toxicants	Tested	against	
Tetrahymena	pyriformis.	J	Chem	Inf	Model	48:	766-784.

38	 Kim	S,	Thiessen	PA,	Bolton	EE,	Chen	J,	Fu	G,	et	al.	(2016)	PubChem	
Substance	and	Compound	databases.	Nucleic	Acids	Res	44:	D1202-
1213.


