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Introduction
DNA methylation has been identified as a key epigenetic 
modification responsible for several biological processes including 
cell differentiation and development, DNA instability, and cancer 
development [1]. Aberrant methylation patterns are involved in 
tumor transformation and progression, thus indicating that these 
epigenetic disruptions are associated with tumorigenesis [2]. This 
methylation patterns are not stochastic, as they tend to silence 
tumor suppressor genes. Thus, inhibition of these abnormal 
methylation levels has been sought as a strategy to reactivate 
tumor suppressor genes [3,4].

DNA methylation is carried out by DNA-methyltransferases 
(DNMTs), which donate a methyl group from S-adenosylmethionine 
(SAM) to the fifth position of cytosine [5]. The enzymes DNMT1, 
DNMT3A and DNMT3B possess this catalytic ability in mammals 
[6]. In particular, DNMT1 is responsible for methylating partially 
methylated DNA strands and thus this it is responsible for 
DNA-methylation maintenance, whereas DNMT3A and DNMT3B 
participate in both maintenance and de novo DNA methylation [7].
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Abstract
DNA methylation is an epigenetic mechanism mediated by a family of the enzymes 
DNA methyltransferases (DNMTs): DNMT1, DNMT3A and DNMT3B. These enzymes 
are emerging targets for the treatment of cancer and other diseases. Over the 
past few years several inhibitors of the three enzymes have been reported. 
Herein, we present a comprehensive chemoinformatic characterization of data 
sets of inhibitors of DNMT1, DNMT3A and DNMT3B assembled in this work. 
The compound data sets were analyzed in terms of physicochemical properties, 
structural fingerprints, and molecular scaffolds. As part of the characterization, 
a scaffold enrichment analysis was performed as well as visual representation of 
the chemical space. It was found that inhibitors of DNMT1 are the most diverse 
covering a broad area of the chemical space. Scaffold diversity analysis showed 
that inhibitors of DNMT1 and DNMT3A have a larger number of molecular scaffolds 
as compared to DNMT3B. It was also concluded that for all inhibitors there are 
molecular scaffolds enriched with active molecules and thus represent promising 
starting points for additional drug development.
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Inhibitors of DNA Methyltransferases

As of now, the most attractive approach for treating 
hypermethylation-based cancer is the inhibition of DNA methyl 
transferases [4,8]. To date, the Food and Drug Administration of 
the United States has approved two drugs that target DNMTs: 
azacitidine and decitabine, both for myelodysplastic syndromes 
[9]. However, these drugs act as covalent inhibitors and are 
associated with several unwanted effects. Therefore, the design 
and development of non-covalent DNMT inhibitors is still on the 
rise [4,10].

Previous studies of the chemical space of epigenetic compounds have 
been performed [11,12]. However, these studies do not delve further 
into the molecular differences between the three DNMTs. Moreover, 
several inhibitors of DNMTs have been recently published and there 
are not comparative studies regarding their chemical structures 
and properties. Herein, we report a comprehensive cheminformatic 
characterization of compound data sets with inhibitors of DNMT1, 
DNMT3A, and DNMT3B. The characterization was based on 
physicochemical properties of pharmaceutical relevance, molecular 
fingerprints, and molecular scaffolds.
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Methods
Data sets
A compound database of inhibitors for all three DNMTs was 
assembled by collecting information from ChEMBL [13], 
BindingDB [14] and HEMD [15]. Additional searching was done in 
Web of Science and SciFinder focusing on papers published from 
2010 to the time of writing (November 2017). The curation of 
the datasets was performed in Molecular Operating Environment 
(MOE) using a published protocol [16,17]. Briefly, a linear notation 
canonical structure (InChI and SMILES) was obtained for each 
molecule. Then, molecules were prepared by keeping the largest 
molecular fragment, removing metals, neutralizing protonation 
states, and removing duplicates. For identical compounds with 
close but different activity values, the mean activity value was 
kept. After data curation, the data sets had 351 unique molecules 
for DNMT1, 192 for DNMT3A and 86 for DNMT3B.

Several compounds reported for DNMT3A and DNMT3B only 
had annotated percentages of inhibition. To be able to compare 
different activity measures, a manual binning of continuous data 
was performed based on a heuristic criterion: compounds were 
distributed into four classes (numbered 1-4) as follows: potentially 
very active, active, inactive, and potentially very inactive. For this 
analysis, the boundaries were: class 4 if the pIC50 was larger than 
5.5, or inhibition value was larger than 75%; class 3 if the pIC50 
was larger than 5, or inhibition value was larger than 50%; class 2 
if the pIC50 was larger than 4, or inhibition value was larger than 
25%; and class 1 if the pIC50 was lower than 4, or inhibition value 
was lower than 25%.

Distribution of relevant chemical properties
Relevant chemical descriptors were computed using MOE and R 
Core Team utilities [18] in RStudio [19]. Six molecular properties 
of pharmaceutical interest were computed [20,21]: partition 
coefficient octanol/water (logP), rotatable bonds (RB), hydrogen-
bond donors (HBD), hydrogen-bond acceptors (HBA), topological 
polar surface area (TPSA), and molecular weight (MW). Six 
additional topological descriptors were calculated: Plane of Best 
Fit, globularity, fraction of sp3 carbons, mass density, radius of 
Gyration and Wiener Index. For most of these descriptors, a low-
energy conformation was used. Data visualization was done using 
RStudio.

Statistical analysis: The statistical comparison of the descriptors 
was carried in RStudio with R Core Team and the lawstat, 
PMCMR, and dunn.test packages. The statistical analysis were 
a Shapiro test to determine normality of distributions, a Levene 
test for the evaluation of heteroskedacity of the descriptors, a 
Kruskal-Wallis test as a non-parametric ANOVA, and Dunn test 
for post-hoc testing. To assess the impact of heteroskedacity 
of the distribution of chemical properties, the variance of the 
distributions for the three libraries was obtained.

Correlation analysis: In order to analyze if the tendency among 
descriptors is constant within the library, a correlation analysis for 
detecting subtle differences was used. The correlation between 
two descriptors 𝑋1 and 𝑋2 was computed using the Pearson 
product-moment correlation coefficient. For this analysis, the 

three compound data sets were divided into active and inactive 
subsets. A correlation analysis was performed generating a 
correlation matrix for each subset. A Hadamard product was 
performed for the two matrices, obtaining a matrix with r2 value 
for each correlation.

Fingerprint-based diversity
The similarity for all pair of compound in a database was computed 
using three distinct molecular fingerprints: Molecular Access 
System (MACCS) keys, Extended Connectivity Fingerprints (ECFP, 
radius 4), and PubChem fingerprints. The similarity coefficient for 
fingerprint comparison was the Tanimoto/Jaccard index [22]. The 
distribution of the similarity values was analyzed with cumulative 
distribution functions (CDF).

To analyze inter-set similarity, the similarity of a compound in a 
given set was computed against all the compounds in the other 
set. The mean and maximum similarity values were recorded and 
multi-fusion similarity maps [23] were generated.

Scaffold content and diversity
Using the Bemis and Murcko's approach [24] the side chains from 
the molecules were removed and the molecular scaffold for each 
molecule was obtained. A unique identifier for each scaffold was 
assigned with RStudio.

Scaffold enrichment
The molecular scaffolds present in each of the three data sets 
were classified in terms of their intrinsic activity. Considering a 
given data set 𝐶 with 𝑛 elements and with 𝜆 different scaffolds 
(chemotypes), the intrinsic activity for the 𝜆-th specific chemotype 
𝐶𝜆 was calculated as [25]: 
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where 𝑛𝜆 is the number of molecules included in the chemotype 
𝜆.

The background activity of the data set C was calculated as:

[ ] [ ]
1

1 n

i i

Act C Activity Index
n

l

=

= å
where n is the total number of compounds in the set.

The enrichment factor (EF) for the 𝜆-th specific chemotype was 
then calculated as:
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EF indicates how many times a scaffold 𝜆 is more active than the 
mean activity of the compound data set. Thus, scaffolds high EF 
values are attractive for drug discovery.

Visual representation of chemical space
Visual representations of the chemical space were performed 
using principal components analysis (PCA) and self-organizing 
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maps (SOMs). Preprocessing of the data was performed using 
the caret package in RStudio. The visualization of the first PCs 
and the respective loadings was performed in RStudio with the 
ggplot2 package. The features used for these methods were the 
computed chemical descriptors and molecular fingerprints.

Results
Data set creation and curation
Table 1 shows the distribution of the activity values of the three data 
sets e.g., inhibitors of DNMT1, DNMT3A, and DNMT3B. Results in 
Table 1 indicate that, in general, more active compounds have 
been identified for DNMT1 as compared to DNMT3A and 3B (e.g., 
larger number of compound in activity class 4). This result may 
be related to the larger number of compounds developed for 
DNMT1.

Distribution of relevant chemical properties
Figure 1 shows the distribution of the six properties of 
pharmaceutical relevance (log P, RB, HBD, HBA, TPSA, and 
MW). The distributions are shown as a combination of boxplots 
and violin plots. The figure suggests that the sets of inhibitors 
of DNMT1 and DNMT3A have similar distributions of HBD and 
HBA, while DNMT3B has slightly higher values. All sets have 
comparable distributions of RB. Compounds in the DNMT3B set 
are slightly less lipophilic (lower logP values) than the other two 
sets. Regarding TPSA, inhibitors of DNMT1 cover a large range of 
values, while inhibitors of DNMT3A are centered near the mean of 
the distribution. The median TPSA values for DNMT3B inhibitors 
is higher than for the other two sets. Figure 1 also indicates that 
all three data sets have comparable distribution of MW.

Figure 2 shows the distribution of selected topological descriptors. 
Some of the topological descriptors showed small differences 
between the data sets, as illustrated by the distributions of 
Plane of Best Fit Index and Globularity. It appears that inhibitors 
of DNMT3A tend to have a larger volume, as evidenced by the 
higher values of radius of gyration, Wiener index, and lower 
mass density. Inhibitors of DNMT3B tend to have higher values of 
fraction of sp3 atoms than the other sets.

The distribution of the molecular properties was also analyzed 
considering the four activity classes of each set. For DNMT1, active 
compounds tend to have higher values of HBD. For DNMT3A, 
the inactive compounds tend to have lower values of HBD while 
the actives have larger values of HBA, RB, log P, and MW. For 
DNMT3B, the most active compounds tend to have higher values 
of HBA, HBD, RB, MW and TPSA. Also, the most active compounds 
are less lipophilic with lower values of log P.

For most topological descriptors there was no relevant difference. 
Overall, inactive compounds tend to have higher values of 
globularity and fraction of sp3 atoms that the other data sets. 
Some topological descriptors also show that active compounds 
for DNMT3B have a high Wiener Index, high mass density, a high 
fraction of sp3 carbons, and a high radius of gyration.

Statistical analysis: Only the distribution of MW for DNMT1, RG for 
DNMT3B, and PBF for DNMT3A and DNMT3B had p-values larger 
than 0.05, indicating that most of the distributions of chemical 

descriptors for the three enzymes deviate from normality. The 
Levene test indicated that only RB, MW, PBF and Glob could 
be considered as having similar variances, rendering the other 
distributions of descriptors as heteroskedastic, but without 
high heteroskedastic effects (see Methods). The Kruskal-Wallis 
analysis indicated that only MW and Glob had similar ranks for the 
three proteins. The post-hoc Dunn test indicated that between 
DNMT1 and DNMT3A only HBA and HBD were comparable, 
while for DNMT1 and DNMT3B Wiener Index and RG had larger 
p- values than 0.05. Comparing DNMT3A and DNMT3B, only PBF 
had similar ranks. These results suggested that, in general, the 
distributions of chemical properties of the three data sets show 
significant differences.

Correlation analysis: For the three data sets of inhibitors of 
DNMT1, 3A and 3B compounds were considered active if they 
had an activity index of 3 or 4, and inactive otherwise. The results 
of the correlation analysis indicate that the DNMTs show different 
tendencies between active and inactive subsets in several 
chemical descriptor. In particular, HBD and radius of gyration 
showed negative correlation between active and inactive subsets 
of DNMT3A and DNMT3B, which indicates that this descriptor 
pair is able to discriminate between active and inactive molecules. 
For the cross-correlation, HBD and Wiener index were able to 
distinguish active subsets of DNMT1 and DNMT3A.

Fingerprint-based diversity
Intra-set comparisons: Figure 3 shows the CDF of the pairwise 
similarity for all the compounds in the DNMT1, 3A, and 3B sets 
computed with the Tanimoto coefficient and three different 
fingerprints (see the Methods section). Table 2 summarizes 
representative statistics of the distributions.

According to MACCS keys, both DNMT1 and DNMT3A have similar 
diversity. DNMT3B shows, in general, higher quantile values and 
higher standard deviation, indicating that compounds in the 
DNMT3B set are less diverse. According to PubChem and ECFP4 
fingerprints, DNMT1 is the most diverse set and DNMT3A is the 
least diverse. The larger diversity of DNMT1 can be associated 
with the larger amount of compounds in this set. Interestingly, 
Pubchem and ECFP4 fingerprints were able to differentiate the 
data sets. This is associated with the better resolution of these 
fingerprints as compared to MACCS keys.

Inter-set comparisons: Multi-fusion similarity maps (Figure 
4) were used to compare the data sets to each other based on 
fingerprints. When comparing the similarity values of DNMT3A 
and DNMT3B with DNMT1 as the reference set, DNMT3B tends to 
cluster in the left bottom area of the plot, with the largest values 
of mean fusión similarity and the lowest values of max fusion 
similarity. In contrast, DNMT3A covers a broader area regarding 
the maximum fusion value. This result indicates that there is a 
smooth structural overlap between compounds of DNMT3A with 
DNMT1, while DNMT3B is overall less similar to DNMT1. Taking 
DNMT3A as reference (Figure 4, middle), DNMT1 and DNMT3B 
have comparable distribution in the multi-fusion similarity map, 
with some compounds in the DNMT3B set with higher values 
of mean fusion similarity. The map indicated that most of the 
molecules in DNMT1 and DNMT3B have, on average, a value 
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Distribution of pharmaceutical properties of pharmaceutical relevance.Figure 1

Boxplots and violin plots of topological descriptors.Figure 2
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Empirical cumulative distribution functions for the pairwise similarity of compounds in the three data sets calculated with the 
Tanimoto coefficient and MACCS keys, ECFP4, and PubChem FP.

Figure 3

Multi-fusion similarity maps with DNMT1, DNMT3A, and DNMT3B as reference data sets.Figure 4

Most frequent scaffolds found in the three sets. The frequency and percentage relative to all scaffolds in the data set are 
indicated. ’Ph’ = phenyl ring.

Figure 5

of c.a. 0.13 of similarity when compared to DNMT3A, but some 
compounds in the DNMT3B set are more similar. Considering 
DNMT3B as reference (Figure 4), the DNMT1 set has lower values 
of maximum fusion similarity. This result indicates proximity 
between the compoubds of DNMT3A with respect to DNMT3B, 
and the higher distance between compounds of DNMT1 and 
DNMT3B.

Scaffold content, diversity and enrichment
Scaffold content: Figure 5 shows the three most frequent scaffolds 
retrieved for each data set. In agreement with previous scaffold 
content analysis [16], most of the scaffolds identified in this work 
were previously found such as SCAFF78, SCAFF75 and SCAFF7. 
However, additional interesting scaffolds were identified (vide infra).
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Scaffold diversity: For each set of inhibitors of DNMT1, 3A, and 
3B, the scaffold diversity analysis was done for three sub-sets. 
The sub-sets were organized based on the reported activity as 
inactive (intrinsic activity lower than 2), intermediate (intrinsic 
activity equal or higher than 2, but lower than 3), and active 
(intrinsic activity equal or higher than 3). Scaffold recovery curves 
were obtained for each of the nine sub-groups (Figure 6). Table 3 
summarizes the results of scaffold diversity for each sub group as 
determined by different metrics [26].

The scaffold analysis revealed that inhibitors of DNMT1 have a 
high scaffold diversity, in particular the inactive subset (Table 
3). In contrast, the active sub-set of DNMT1 is the least diverse. 
For DNMT3A, the active set and compounds with intermediate 
activity showed, in general, larger scaffold diversity than the 
inactive compounds. For DNMT3B, the active set had the largest 
scaffold diversity. When comparing the active-scaffold subsets 
from the three enzymes, diversity measures indicated that 
DNMT3B is the most diverse, followed by DNMT1 and DNMT3A.

Scaffold enrichment: Chemotype-enrichment plots [25] were 
generated for each set by plotting the scaffold frequency vs. the 

EF (see the Methods section). The chemotype-enrichment plots 
are shown in Figure 7.

For DNMT1, nearly 55% of the chemotypes have EF values larger 
than one. The three most frequent scaffolds are SCAFF75, SCAFF78 
and SCAFF7 (Figure 5). For DNMT3A, 61% of the chemotypes have 
EF values higher than one. In contrast, for DNMT3B, only 44% 
of the chemotypes have values larger than one. These results 
indicated that DNMT3A has been explored more in terms of 
scaffolds given that it has chemotypes with high frequency and 
high EF. This figure also shows the existence of some chemotypes 
with high values of EF and low values of frequency, which could 
indicate areas of opportunity regarding the development of new 
SAR studies for the three DNMTs.

Figure 8 shows additional attractive scaffolds: SCAFF254 and 
SCAFF109 has selectivity for DNMT1; SCAFF266 has high EF for 
DNMT3A; SCAFF237 has high EF for all three DNMTs.

SAR analysis based on selected scaffolds: Analysis of cofactor-
related scaffolds revealed that a substructure of SCAFF78 was 
present in several chemotypes. Thus, considering SCAFF78 as 

Scaffold recovery curves for DNMT1 (left), DNMT3A (center), and DNMT3B (right), analyzed in terms of highly active scaffolds 
(3-4), moderately active scaffolds (2-3), and inactive scaffolds (1-2).

Figure 6

Chemotype-enrichment plots for DNMT1, DNMT3A, and DNMT3B.Figure 7
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reference, the EF values were used as a guide to explore selectivity 
among the three DNMTs. Figure 9 shows the core nucleosidic 
scaffold with two side chains, R1 and R2. For this analysis, we used 
scaffolds with a chemotype frequency equal or larger than three.

Taking the EF of SCAFF78 as a baseline (0.89 for DNMT1, 1.56 for 
DNMT3A and 1.2 for DNMT3B), and leaving R2 fixed as a hydrogen, 
it was found that when R1=2, the EF improved substantially for 
DNMT3B (1.18 for DNMT1 and 1.6 for DNMT3B). When R1=3, the 
EF decreased for DNMT1 while improving for DNMT3B (0.78 for 
DNMT1 and 1.9 for DNMT3B). This suggests that elongating the side 
chain of the scaffold can improve selectivity for DNMT3B against 
DNMT1. Keeping fixed R1=1, it was found that the substitution 
R2=A (Figure 9) did not improve the EF (0.96 for DNMT1 and 1.05 
for DNMT3B). The substitution R2=B decreased the EF for DNMT1 
while being similar for DNMT3B (0.65 for DNMT1 and 1.09 for 
DNMT3B). The substitution R2=C diminished overall the EF (0.78 

for DNMT1 and 0.73 for DNMT3B). These results suggest that a 
longer linker in R2 tends to decrease the overall activity, and that 
keeping a constrained cycle of six can also favor selectivity for 
DNMT3B against DNMT1. These results can be found combined 
in SCAFF77, which has R1=3 and R2=A, and has an EF for DNMT1 of 
1.18 and for DNMT3B of 1.45, implying that the previous effects 
cannot interact in synergy. Finally, it was also noted that removing 
the nitrogen atom marked with the electron pair can increase 
both EF of DNMT1 and DNMT3B to 1.57 and 1.94, respectively.

Visual representation of the chemical space
Figure 10 shows a visual representation of the chemical space 
based on PCA of six properties of pharmaceutical relevance i.e., 
HBA, HBD, TPSA, RB, logP and MW. The first principal component 
is largely associated with TPSA, HBA and HBD, while the second 
principal component is associated with RB, MW, and LOGP. Figure 
10 shows that the three data sets share a common space, with 

Other representative scaffolds in the datasets (Ph=Phenyl, Qu=Quinoline, Pyr=Pyrimidine). For each scaffold is shown the 
enrichment factor and scaffold frequency (in parenthesis).

Figure 8

Scaffolds found in the dataset, with the maximum common substructure of SCAFF78 (Ph=Phenyl, Bi=Biphenyl).Figure 9

Visualization of the chemical space based on oral availability descriptors (MW, logP, RB, TPSA, HBD and HBA) and a principal 
component analysis. Left: All compounds. Center: Only active compounds (activity index equal or greater than 3). Right: 
Only inactive compounds (activity index lower than 3).

Figure 10
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Visualization of the chemical space based on oral availability descriptors (MW, logP, RB, TPSA, HBD and HBA) projected on 
a self-organizing map. Top: only inactive compounds. Bottom: only active compounds.

Figure 11

Library Size (n)a n (IC50)a n (%)a n (class 4)b n (class 3) n (class 2) n (class 1)

DNMT1 350 350 - 40 (11.5%) 157 (45%) 106 (30%) 47 (13.5%)

DNMT3A 190 35 155 28 (15%) 24 (12.5%) 42 (22%) 96 (50.5%)

DNMT3B 86 61 25 17 (20%) 8 (9%) 23 (27%) 38 (44%)

aSize, total number of compounds; n(IC50), number of compounds with IC50 values; n (%), number of compounds with activity data as percentage.
bActivity classes: Class 4 if pIC50 was larger than 5.5, or inhibition value was larger than 75%; Class 3 if pIC50 was larger than 5, or inhibition value was 
larger than 50%; Class 2 if pIC50 was larger than 4, or inhibition value was larger than 25%, and Class 1 if pIC50 was lower than 4, or inhibition value was 
lower than 25%.

Table 1 Distribution of the activity values of the inhibitors of DNMT1, 3A and 3B considered in this work. The percentage is relative to the total elements 
in each data set.

DNMT1 DNMT3A DNMT3B

MACCS PubChem ECFP4 MACCS PubChem ECFP4 MACCS PubChem ECFP4
Min. 0.00 0.04 0.00 0.12 0.12 0.03 0.10 0.10 0.00

1st Qu. 0.34 0.35 0.09 0.35 0.42 0.11 0.29 0.26 0.09

Median 0.43 0.44 0.11 0.44 0.49 0.15 0.54 0.42 0.14

Mean 0.43 0.44 0.13 0.46 0.52 0.19 0.57 0.50 0.25

3rd Qu. 0.52 0.54 0.14 0.51 0.61 0.19 0.86 0.74 0.42

Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SD. 0.14 0.15 0.08 0.16 0.16 0.15 0.27 0.28 0.22
aQu, quartile; SD, standard deviation.

Table 2 Statistics of pairwise similarity distributions computed with three fingerprints and the Tanimoto coefficient.
a
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Library Set M N Nsing N/M Nsing/M Nsing/N f50 AUC Median(ECFP4)

Inactive 127 107 93 0.84 0.73 0.87 0.411 0.570 0.1014

DNMT1 Intermediate 179 123 99 0.69 0.55 0.80 0.276 0.640 0.1053

Active 44 28 22 0.64 0.50 0.79 0.214 0.656 0.0978

Inactive 138 68 51 0.49 0.37 0.75 0.117 0.728 0.1465

DNMT3A Intermediate 22 15 10 0.68 0.45 0.67 0.333 0.618 0.2115

Active 30 18 16 0.60 0.53 0.89 0.167 0.681 0.2187

Inactive 39 21 16 0.54 0.41 0.76 0.190 0.703 0.0750

DNMT3B Intermediate 37 10 6 0.27 0.16 0.60 0.200 0.701 0.1379

Active 10 7 5 0.70 0.50 0.71 0.286 0.614 0.3793

N: number of cyclic systems; M: number of molecules; Nsing: number of singletons; f50: fraction of cyclic systems that contains 50% of the data set; 
AUC: area under the curve

Table 3 Summary table for metrics of scaffold diversity of each DNMT.

DNMT1 inhibitors being the most diverse. When analyzing only 
the most active compounds (Figure 10) - compounds with activity 
index equal or greater than 3 – the three active subsets appear to 
cluster in different regions of the chemical space.

Figure 11 shows a visualization of the chemical space based on 
SOM. In this plot, inactive compounds in the three sets tend 
to span over the map. However, when showing only the active 
compounds (active index equal or greater than 3), it shows that 
active compounds of DNMT3A and DNMT3B are not covering the 
same chemical space.

Conclusions
A global cheminformatic comparison of three data sets of 
inhibitors of DNMT1, DNMT3A and DNMT3B is reported in this 
work. Analysis of physicochemical properties and molecular 
diversity based on fingerprints showed that inhibitors of DNMT1 
cover broader areas of the chemical space. In contrast, DNMT3A 
and DNMT3B cover smaller areas. Analysis with topological 

descriptors revealed that inhibitors of DNMT3A have larger volume 
than inhibitors of DNMT1 and 3B. Inhibitors of DNMT3B also had 
higher values of fraction of sp3 atoms than the other sets. Visual 
representation of the chemical space revealed that all three 
sets of inhibitors of DNMT1, 3A and 3B share a common space. 
Scaffold diversity analysis indicated that inhibitors of DNMT1 and 
DNMT3A have a larger number of molecular scaffolds as compared 
to DNMT3B. For all three data sets, there are molecular scaffolds 
enriched with active molecules representing promising starting 
points for drug development.
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