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Introduction
Experimental design is a cost- and time-efficient method of 
investigating and optimising reactions. Using this approach, 
several factors can be studied simultaneously, as opposed to the 
traditional experimental method of varying one factor at a time. 
The method uses statistics to determine the most important 
factors in a reaction and the interactions between these factors 
which may affect the outcome. In our experience, DoE is an 
underutilised technique throughout chemistry, although its 
benefits are being recognized and it is being adopted more readily 
in industrial settings [1-3]. One possibility for the slow update of 
experimental design is that it is a statistical method, however, the 
mathematics involved is simple and the focus should be on an 
improved understanding of chemical reactivity. The aim of this 
paper is to deliver an overview of experimental design, providing 
case studies to exemplify its use, and empower chemists to add 
DoE to their toolkit. DoE is a fundamental tool for Quality by 
Design (QbD), and this is increasing the requirement to use DoE 
within industry [4,5].

When considering a chemical reaction there is factors which are 
easily investigated such as concentration, temperature, pressure 
or stoichiometry of reagents [3]. These are continuous factors 
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and are only limited by the ability of the equipment to achieve 
the appropriate setting of the factor (e.g. temperature, pressure, 
addition rate etc.). In an experimental design, continuous factors 
are studied at a high (coded as +1) and low (coded as -1) level1. 
Centre point experiments are run at the mid-level in duplicate, to 
allow for estimation of experimental error and variation. There 
are other parameters which are also important in a chemical 
reaction, but are more difficult to investigate, such as solvent, 
catalyst or ligand. These are termed discrete factors and are 
limited by their existence, which means they are more difficult 
to relate to each other (e.g. comparing solvent effects of toluene 
to methanol to acetonitrile). However, it is possible to correlate 
these factors by looking at their chemical and physical properties, 
allowing investigation by DoE.

Principal component analysis
Principal Component Analysis (PCA) is a multivariate data 
analysis tool which can be used to relate discrete factors through 
their chemical and physical properties, for example, polarity, 
polarizability and hydrogen-bonding [6]. PCA allows the creation 

1 The high level is assigned +1 and low level assigned -1 to allow the 
centre point to be 0.
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of new principal components from the multitude of original 
properties, leading to 3 to 4 properties which can explain 70-80% 
of the variation in the data. The principal components can be 
selected to suit the reaction under investigation. In its simplest 
form, PCA generates a map of solvents where materials close to 
each other on the map will have similar properties and behave 
similarly but may be structurally very different. To use a PCA map 
successfully, the range of materials and the chosen properties 
should be appropriate for the chemistry in question.

The use of a solvent PCA map allows each solvent principal 
component to be studied in an experimental design just like the 
standard factors of temperature, concentration and equivalents 
of base (Figure 1a), where each solvent principal component 
is examined at a low and high value. Three solvent principal 
components will together provide the location of one solvent 
(e.g. -1-1-1) on the map. The corners of a cube can be selected 
to cover a large area of the solvent map, ranging from -1-1-1 to 
+1+1+1, where each corner codes for a solvent in the solvent 
map. The diversity of solvents in the solvent PCA map will ensure 
the 8 solvents are very different from each other. PCA solvent 
maps have been developed and used for chemical reactions and 
polymorph screening [7-10]. PCA has also been used successfully 
for ligand mapping by us in collaboration with the University 
of Bristol [11-12] as well as for amines, aldehydes, ketones and 
Lewis acids [13-15].

Combining PCA and DoE
The combination of PCA with DoE allows for a very efficient 
investigation of the whole chemical space for a given reaction 
[16]. When PCA and DoE are combined during reaction screening 
it directs the future experimental effort into the regions of 
chemical space where the specific chosen reaction occurs most 
successfully. An example of a five factor DoE combined with PCA 
is shown in Figure 2, combining solvent principal components 
with the continuous factors of temperature and concentration. 
The design can then be investigated with different design options 
to choose from to balance the amount of information gained 
with the number of experiments performed. This depends 
on i) the number of potentially significant factors and ii) the 
number of experiments that can be carried out accurately in a 
time efficient manner. In practice, a resolution IV2 fractional 

2In a resolution III design main terms are confounded with two-way 
interactions. Some 2-factor interactions are confounded with other 
2-factor interactions in a resolution IV design. The actual interaction can 
often be deciphered through chemical interpretation of each possible 
interaction. The results are then confirmed during the validation 
experiments. In a resolution V design, main terms and two-way 
interactions are free from confounding.

factorial design will typically deliver the maximum information 
for the minimum effort with the understanding that this design 
will result in confounding of the interactions. Confounding or 
aliasing are statistical terms describing when the effects of two or 
more coefficients or interactions are indistinguishable from each 
other. However, these confounded terms can be separated and 
explained by carrying out additional experiments.

When a factor is studied in a DoE a suitable high (+1) and low (-1) 
value for the factor is investigated. Each factor investigated leads 
to a potential increase in the number of experiments. Two factors 
requires four experiments while four factors requires sixteen 
experiments (number of experiments=2n where n is the number 
of factors). When combining PCA with DoE for a straightforward 
reaction with only 2 reagents, such as an SN1/SN2 reaction 
(Scheme 1), a number of factors are likely to be important.

The number of potentially significant parameters for even a 
seemingly simple reaction can extend into double figures and 
will include the stoichiometry of the reagents, the concentration 
and temperature of the reaction, whether an additive, such as a 
base, is required and the amount of additive, and the solvent. The 
method for calculating the huge number of reactions required to 
investigate these factors (6400 experiments, Figure 3) has been 
detailed at length previously [17]. Employing PCA with DoE can 
reduce this number to just 19 for an initial design. This will identify 
the significant factors and the optimum ranges and if there are 
any interactions between the factors. The PCA maps can then 
be used to identify additional materials in the identified region 

1a DoE with three continuous factors. 1b DoE with three 
solvent principal components.

Figure 1
 

Example of an SN1/SN2 reaction.Scheme 1

 

DoE combining three solvent principal components (sPC1, 
sPC2 and sPC3) with two continuous factors (temperature 
and concentration).

Figure 2
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of activity, giving further opportunity to improve the reaction. A 
final design of 11-19 experiments can then be implemented to 
finalise the optimum conditions.

In a metal catalysed reaction, the number of potentially 
important factors grows considerably [17]. The choice of catalyst, 
ligand, amount of catalyst and the ratio of metal to ligand are 
likely to have a significant effect on the outcome of the reaction 
in addition to the parameters considered for the SN2 reaction.

If you consider a palladium catalysed reaction, such as a Suzuki 
Miyaura reaction (Scheme 2), and accept 500 potentially 
significant ligands for that reaction, a design of 51.2 million 
potential experiments would be required to investigate (Figure 
4). Using PCA to select 9 diverse ligands and 9 solvents, a DoE of 
32 experiments with three repeat centre points can effectively be 
used to investigate the chemical space. Where this approach has 
been used during the development of Suzuki Miyaura reactions 
to generate pharmaceutical intermediates, the selection of 10 
additional ligands from the identified region of activity provided 
increased catalyst activity resulting in a lower catalyst loading in 
one process.

DoE has been used in combination with PCA to reveal that the 
choice of solvent was the key to the stability of the reaction, with 
the chosen solvent preventing decomposition of the starting 
materials and still allowing a rapid cross coupling reaction. On 

selection of the best solvent and ligand for the process from a 
screening design, a subsequent design provided the optimum 
reaction conditions, typically based around 19 experiments.

A recent publication from scientists at Merck detailed a high 
throughput screening approach in which 1536 nanomole-scale 
reactions were performed in one day with the analysis requiring 
a further 2 days [18]. This approach did allow for the detailed 
investigation of a number of discreet variables such as base and 
ligand, but even these large numbers of reactions are only a small 
portion of the possible experiments and no information was 
gained on the reproducibility, any factor interactions and if there 
were any non-linear responses.

It is clear from Figures 3 and 4 that the combination of DoE and 
PCA can significantly reduce the number of experiments required 
to investigate the chemical space around the reaction.

Potentially significant parameters for a SN2 reaction and the number of potential experiments by OVAT (assuming only two levels of 
each factor) and by DoE.

Figure 3

 
A Suzuki Miyaura reaction.Scheme 2
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Design types
Resolution IV fractional factorial designs are chosen to maximize 
the amount of information gained from the initial screening 
experiments, while minimizing the number of experiments in 
the first design. The use of resolution IV designs means there 
will be confounding (aliasing) between two-way interactions, 
but the main terms are free from this effect. The confounding 
between interactions can often be interpreted using chemical 
understanding of the reaction, and can be confirmed in 
subsequent experimentation, when the number of potential 
factors is reduced to a smaller set, or by individual confirmation 
experiments. The use of this type of screening design will provide 
information about the presence of interactions between the 
factors investigated in the reaction. It is important to note that 
the designs are exploring the potentially significant parameters 
for the chemical reaction and the initial experiments are unlikely 
to provide the optimum process conditions. However, they will 
efficiently direct future experimental efforts into the optimum 
regions of the chemical space.

Potentially significant scale dependent process factors such as mass 
transfer, heat transfer, heating, cooling, and addition rates should be 
looked at in more detail during subsequent experimentation as they 
are easier to measure and control on a larger scale.

D-Optimal designs may also provide a similar reduction in the 
number of experiments to the resolution IV fractional factorial 
designs. D-Optimal designs are generated by a computer 
algorithm and allow parameters to be estimated without bias 
whilst minimizing the variance of the parameter estimates 
for a pre-specified model (i.e. linear, interaction or response 

surface model). These types of designs are particularly useful 
when classical designs do not apply, such as looking at more 
than two levels of a discrete factor or looking at three or more 
levels of a continuous factor. D-Optimal designs are useful for 
selecting solvents or ligands from a database based on principal 
components from a solvent or ligand PCA map. The investigation 
of additional reaction parameters, or possible effects of ligand 
and solvent together, requires a candidate set of all the possible 
combinations of various factor levels under consideration to be 
initially created, and the experiments in the D-Optimal design are 
selected from this candidate set.

Discussion
DoE is a very powerful tool when used properly. The generation 
of reaction profiles, from collecting multiple samples at different 
time points, for each experiment will deliver increased information 
about the reaction process. In addition to this, identifying all 
significant impurities (e.g. greater than 5%) will complement the 
statistical analysis with chemical understanding.

A single sample from an experiment after a fixed time gives limited 
information about the chemical process (Figure 5a), whereas, 
the creation of reaction profiles can provide a significant amount 
of additional information. Understanding what impurities are 
formed and how they are formed can aid control of the impurity. 
Understanding when impurities are formed provides powerful 
insight into the reaction and indicates the ease or difficulty of 
scaling up the reaction. Identifying reaction conditions which 
eliminate impurities, generate product more rapidly or give 
increased selectivity can be very beneficial and may not be 
identified when investigated in an OVAT format. The additional 
samples required to generate reaction profiles increases the time 

Potentially significant parameters for a catalytic reaction and the number of potential experiments by OVAT (assuming only two levels 
of each factor) and by DoE.

Figure 4
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in analysing the reactions but the benefits significantly outweigh 
the cost of the additional work in most cases. Having collected 
all the data from the experiments, understood the outcomes 
of the reactions and when or why impurities are formed, the 
samples can be analysed by DoE. It is not necessary to generate 
models for every sample taken. The chemical understanding and 
the statistical models should be considered together alongside 
the preliminary kinetic information obtained from the reaction 
profiles.

Figure 5a shows a reaction with a single sample taken after an 
overnight reaction. Figure 5b shows the additional information 
gained from the same reactions with reaction profiles showing 
conversion for the 4 reactions over time. Figure 5c shows the 
progress of a reaction for starting material consumption, impurity 
formation and product formation while Figure 5d is a hypothetical 
profile for a reaction where an intermediate is initially formed and 
the intermediate goes on to form both product and the impurity.

The application of DoE and PCA
It is known that the use of non-obvious solvents, such as non-

polar solvents for electron rich Heck reactions, can completely 
change reaction selectivity [19]. The power of combining PCA 
and DoE will increase the possibilities for organic and process 
chemists and is demonstrated in the following Case Studies.

Case study 1: The reaction of benzyl alcohol with 1.2 mol eq. 
morpholine using 5 mol% IrCp*Cl dimer, 5 mol% potassium 
carbonate in toluene at 100°C for 4 h showed only trace levels 
of product (generic reaction in Scheme 3) [20]. The same 
reaction using Ru(p-cymene)Cl dimer with DPEphos showed 13% 
conversion after 1 hr and full conversion after 24 hrs. When the 
reaction mechanism is considered, it is not clear why the base is 
required (either catalytically or in stoichiometric quantities) [21-
23]. There is evidence that added base is not required, and in 
fact, some substrates perform more efficiently with added acid3 
or the inclusion of molecular sieves [24]. A DoE was carried out to 
investigate the ligand and solvent effects on the reaction as well 

3 Personal communication with Alan Pettman, Pfizer: the use of a 
catalytic acid such as TFA provided significant enhancements in the rate 
of some redox neutral couplings of alcohols and amines, presumably 
protonating the imine and increasing its rate of reduction.

Reaction profiles providing greater insight into reaction pathways.Figure 5
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as investigating the effect of the additives4. The design focused on 
monodentate ligands for the Ru catalysed redox neutral coupling. 
The design also investigated the effect of the pre-catalyst 
([IrCp*Cl]2 or [Ru(p-cymene)Cl]2) and the additive (acid, base or 
nothing). A diverse set of solvents (Table 1) and ligands (Table 2; 
Figure 6) were chosen separately from the appropriate solvent 
and ligand maps.

A candidate set of experiments was created based on all 
combinations of ligand, solvent, catalyst and additive for the 
monodentate ligands. A D-optimal design was used to select 46 
experiments from the monodentate ligand set. This design was 
chosen to allow investigation of the discrete additive at three 
levels (acid, base or nothing). Two control reactions using toluene 
and DPEphos were carried out with each design as this was the 
typical (bidentate) ligand used.

The experimental results can be seen in the replicate plot 
(Figure 7), which highlights a wide range of activity across the 
different solvents, ligands, pre-catalysts and additives. Excellent 
reproducibility was seen for all the control reactions (shown 
by blue squares). Analysis of the DoE showed that for the 
monodentate ligands a significant model was obtained with an 
R2 of 77% (R2 shows the model fit, a value of more than 0.5 is 
desired) and Q2 of 50% (Q2 is a test of diverse model problems, 
a value greater than 0.25 is desired). Refinement of the model 
revealed three of the eight investigated factors were significant 
in the reaction, pPC, pP3 and sPC, but interactions between the 
ligand PCs had the greatest impact on conversion (Figure 8). A 
factor or an interaction can have a positive or negative effect on 
the model. The three significant factors all have a negative effect 
on conversion in this model.

A number of monodentate ligands were nearly as effective as 
DPEphos for the [Ru(p-cymene)Cl]2 catalysed process, in particular 
tri-i-butylphosphine, which achieved 91.7% conversion, (Table 3) 
while [IrCp*Cl]2 showed increased reactivity with added ligand 
(Table 4).

The effect of solvents can be seen in Figure 9. Solvents in the 
top left quadrant gave full conversion (marked in green), whereas 
those in the bottom left quadrant gave good reactivity (marked 
in light green) but with about 20% lower conversion. More polar 
solvents on the right are generally less effective with lower 
levels of conversion. Of particular note was benzonitrile, which 
seems to inhibit most reactions (<5% conversion for any system 
investigated)5.

4 Software: MODDE 10.1; Umetrics, part of Sartorium Stedim Biotech: 
Umeå, Sweden, 2014, for all experimental designs. SIMCA 13; Sartorius 
Stedim Data Analytics AB: Umeå, Sweden, 2013, for Principal Component 
Analysis. http://umetrics.com
5 Investigations using substrates containing aromatic nitriles have shown 
no reaction in our hands including for example 4-cyanobenzyl alcohol 

From the two-dimensional representation of the monodentate 
phosphine ligand map (Figure 10) it is evident that there is an area 
of inactivity (pink circle) around which there are varying levels 
of activity (red as low to green as higher activity) with either Ru 
or Ir for the ligands initially investigated in the first design. The 
differing results for the two metal catalysts (Ru, Figure 11 and Ir, 
Figure 12) show that each have specific requirements for their 
ligands and the same ligands cannot be used successfully for both 
metals.

To further investigate the importance of the ligands on the activity 
of Ir catalyst systems, additional experiments were carried out 
to determine additional potential monodentate ligands. The 
selection of these ligands was made to sample specifically around 
the area of inactivity initially pinpointed in the top right-hand 
quadrant of Figure 12 (Table 4). Plotting the additional data on 
the two-dimensional plot of PC1 and PC2, it appears as if some 
ligands now sit in the area of activity (Figure 13). However, if 
additional principal component plots are utilised, it can be seen 
that the ligands are further separated (Figure 14 shows PC1 
and PC4). The combined use of PCA with DoE has uncovered 
monodentate ligands which provide the same high reactivity 
(>90% conversion) for Ir catalysis as that previously seen with Ru 
catalysis.

In summary, the combination of PCA and DoE has highlighted: i) 
ligands effective for Ru are not compatible with Ir; ii) Ir can have 
the same reactivity as Ru with the correct choice of ligand; iii) 
solvent can have a significant deleterious effect on the reaction; 
and iv) the effect of acid, base or molecular sieves was insignificant 
in the experiments investigated, as evidenced by the absence of 
these factors in any response models [20].

Case study 2: A Suzuki Miyaura coupling of a heteroaromatic 
halide with a pinacol boronic ester was used in the late stage of a 
pharmaceutical intermediate synthesis (Scheme 4).

The reaction suffered from poor robustness during manufacture, 
requiring 5 mol% of a very active catalyst to achieve high yield. A 
fractional factorial design was chosen to look at nine monodentate 
ligands, two solvents, and two palladium salts at a resolution V 
level in 19 experiments. The design provided an excellent model 
with an R2 of 96% and a Q2 of 86%. The replicate plot (Figure 15) 
shows there was a range in conversion across the experiments.

The Coefficient plot (Figure 16) identified the ligand PCs as 
the most significant factors in the design. There was a large 
interaction between the solvent and the palladium salts, which 

with N-methyl piperazine and 3-[(2-hydroxyethyl)(phenyl)amino]
propanenitrile with morpholine, (2,2,2-trifluoroethyl)hydrazine, butane-
1,4-diamine or 1-cycloheptylmethanamine (unpublished results).

 

Redox neutral N-alkylation of morpholine.Scheme 3

 
Suzuki Miyaura reaction.Scheme 4

http://umetrics.com
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Monodentate ligand structures.Figure 6

Solvents sPC1 sPC2 sPC3
1,4-Dioxane 0 0 0

Di-n-butyl ether -1 -1 -1
n-Butyl acetate -1 -1 1

Tetralin -1 1 -1
Chlorobenzene -1 1 1
Pentan-3-one 1 -1 -1
Proprionitrile 1 -1 1

N,N-Dimethylacetamide 1 1 -1
Benzonitrile 1 1 1

Table 1 A diverse selection of solvents.

Monodentate P ligands pPC1 pPC2 pPC3
Tri-p-tolylphosphine 0 0 0

Tris(pentafluorophenyl)phosphine -1 -1 -1
Tris[4-(trifluoromethyl)phenyl]phosphine -1 -1 1

Triethyl phosphite -1 1 -1
Tri-i-propylphosphine -1 1 1

Tri-t-butylphosphine (HBF4 salt) 1 -1 -1
Tris(2-methoxyphenyl)phosphine 1 -1 1

2,8,9-Tri-i-butyl-2,5,8,9-tetraaza-1-phosphabicyclo[3,3,3]undecane 1 1 -1
Tri-i-butylphosphine 1 1 1

Table 2 A diverse selection of monodentate ligands.

Phosphine Solvent Additive conv/9h%
(C6F5)3P (PL16) Di-n-butylether K2CO3 87.5
(OEt)3P (PL18) N-Butyl Acetate TFA 10.4

(o-OMePh)3P (PL60) Di-n-butylether none 0.7
(p-CF3Ph)3P (PL15) Pentan-3-one none 72.6

iBu3P (PL216) Tetralin TFA 91.7
tBu3P (PL07) Chlorobenzene K2CO3 26.7

triple cage/iBu (PL140) Chlorobenzene TFA 8.9
DPE Phos Toluene K2CO3 93.4
DPE Phos Toluene K2CO3 95.5

Table 3 Selected results from the reactions catalysed by [Ru(p-cymene)Cl]2.
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Phosphine Solvent Additive conv/9h%
(C6F5)3P (PL16) Tetralin TFA 69.4
(OEt)3P (PL18) Tetralin K2CO3 41.3

(p-CF3Ph)3P (PL15) Benzonitrile TFA 10.7
(p-MePh)3P (PL13) dioxane none 4.1

iPr3P (PL05) Tetralin K2CO3 14.6
tBu3P (PL07) Chlorobenzene none 71.4

triple cage/iBu (PL140) Proprionitrile K2CO3 62.7
Triphenylphosphite(PL20)^ Tetralin None 31.5

Tris[3,5-di(trifluoromethyl)phenyl]phosphine (PL32) ^ Tetralin None 5.7
Tris(2-methoxyphenyl)phosphine (PL60) ^ Tetralin None 4.4

X-Phos (PL146) ^ Tetralin None 42.3
Dave-Phos (PL147) ^ Tetralin None 93.2

t-Butyldicyclohexylphosphine (PL152) ^ Tetralin None 91.1
2-(Dicyclohexylphosphino)biphenyl (PL155) ^ Tetralin None 97.4

iBu3P (PL216) ^ Tetralin None 29.7

Table 4 Selected results from the reactions catalysed by [IrCp*Cl]2 (^ for additional ligand selection).

 

Replicate plot showing range in conversion of benzyl alcohol with monodentate ligands after 9 hrs.Figure 7

 

Coefficient plot from the model for conversion in the DoE investigating monodentate phosphines [20].
Abbreviations: pPC is Phosphine PC1; pP2 is Phosphine PC2; pP3 is Phosphine PC3; sPC is Solvent PC1; sP2 is Solvent 
PC2; sP3 is Solvent PC3; Add is K2CO3, none (0) or Trifluoroacetic acid, Cat is Ru(p-cymene)Cl dimer or IrCp*Cl dimer; 
Pd(Acetate) is Pd(OAc)2; Pd(dba) is Pd2dba3; Sol(A) is Solvent A and Sol(B) is Solvent B. 

Figure 8
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Solvent map using PC1 and PC2 highlighting extent of conversion - coloured red (0%) to green (100%).Figure 9

Monodentate ligand map using PC1 and PC2 highlighting the maximum catalyst activity [20].Figure 10

 

Monodentate ligand map using PC1 and PC2 highlighting activity for experiments with Ru as catalyst.Figure 11
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Monodentate ligand map using PC1 and PC2 highlighting activity for experiments with Ir as catalyst.Figure 12

Monodentate ligand map with additional ligands using PC1 and PC2 highlighting ligands with Ir as catalyst.Figure 13

 

Monodentate ligand map with additional ligands using PC1 and PC4 highlighting ligands with Ir as catalyst.Figure 14
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Replicate plot for Suzuki Miyaura design.Figure 15

 

Coefficient plot from the model for conversion in the DoE investigating monodentate ligands in the Suzuki Miyaura reaction.
Abbreviations: pPC is Phosphine PC1; pP2 is Phosphine PC2; pP3 is Phosphine PC3; sPC is Solvent PC1; sP2 is Solvent PC2; sP3 
is Solvent PC3; Add is K2CO3, none (0) or Trifluoroacetic acid, Cat is Ru(p-cymene)Cl dimer or IrCp*Cl dimer; Pd(Acetate) is 
Pd(OAc)2; Pd(dba) is Pd2dba3; Sol(A) is Solvent A and Sol(B) is Solvent B.

Figure 16

 

PCA map of monodentate ligands for initial design for the Suzuki Miyaura reaction coloured red (0%) to green (100%).Figure 17
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highlights the importance of choosing the right pre-catalyst and 
solvent combination.

The maximum yield was achieved after one hour of reaction. A 
study of the reaction profiles from each experiment highlighted 
the rapid decomposition of the boronic ester under the reaction 
conditions in the reaction vessel. However, the boronic ester 
was completely stable in the reaction solvent even at elevated 
temperatures, therefore the controlled addition of the boronic 
ester, over a six-hour period as a solution in reaction solvent, 
allowed the development of a robust reaction with a lower (1 
mol%) catalyst loading.

Subsequently, a study was undertaken to investigate the ligand 
effects on the reaction using PCA. A fractional factorial DoE 
design was created by selecting ligands from a monodentate 
phosphine ligand PCA map. The results immediately identified a 
new monodentate ligand that performed as well as the original 
catalyst at a sixth of the cost (Figure 17).

Analysis of the results from the initial screening identifies a wider 
region of ligand activity. The plot in Figure 17 is of PC1 and PC2. 
Subsequent principal components separate the unsuccessful 
ligands in the region of activity. Additional ligands were selected 
to evaluate the region around the ‘sweet spot’ of activity. Two 
iterations of additional ligand selections were made to identify 
alternative suitable ligands with the final results showing a clear 
area of activity (Figure 18).

Ligand screening using PCA identified a number of alternative 
ligands. The modified experimental procedure enabled a greater 
than 5-fold reduction in the catalyst loading while providing a 
more robust process without the degradation of starting material. 
The identification of alternative catalysts, such as tri-tert-
butylphosphine/palladium acetate, offered a reduction in total 
catalyst and ligand cost of approximately 5-fold while maintaining 
reactivity. The modified procedure allowed the use of less active 
ligands and triphenylphosphine has been shown to be a viable 
ligand for this reaction, but with a longer reaction time. The use 
of PCA allowed informed rational decision making, and provided 
a more robust process with a 10-fold overall reduction in cost.

Case study 3: DoE and PCA were used in combination to find 
an alternative ligand for a Buchwald-Hartwig sulfamidation of 
a heteroaromatic chloride with a sulfonimine (Scheme 5) [17]. 
The initial reaction conditions gave good conversion but used 
an expensive ligand. Thus, a more affordable ligand, which 

maintained or exceeded the performance of the original ligand 
without generating new impurities, was sought.

Initially, a screening fractional factorial DoE of 35 experiments 
was conducted to look at nine ligands, the metal to ligand ratios 
(1:1 and 1:2), and the palladium source (Pd(OAc)2 and Pd2(dba)3)

6. 
All other parameters were kept constant.

Analysis of the data shows that over half of the reactions had 
very low extent of conversion (<10%) whilst 6 ligands gave near 
complete conversion in the same timeframe (Figure 19). A 
significant model was calculated from the data, with an R2 of 60% 
and a Q2 of 44%, however, the model is not excellent in fit and 
predictiveness due to the wide-ranging results.

Analysis of the coefficient plot showed that the palladium salt and 
the metal:ligand ratio had no effect on the response and these 
factors were therefore removed from the model. The influencing 
factors, the ligand PCs, are shown in the coefficient plot (Figure 
20). The Contour plot (Figure 21) shows how only a small section 
of the ligand map results in efficient product formation where the 
coordinates are pPC +1, pPC2 -1, pPC3 -1.

The two new catalyst systems (i.e., metal:ligand combinations) 
which were identified to give very good conversion are shown in 
Figure 22 highlighted in green. One of these new ligands was half 
the cost of the initially employed ligand.

A second iteration of 12 reactions focussed on the region of 
optimum ligand space, as identified in Figure 22, for 1 principal 
component. From this, four more ligands which gave good or 
complete conversion were found. Another screen of 12 reactions 
looked at a different principal component in the area of optimum 
ligand performance which identified a further four effective 
ligands. Figure 23 highlights the region of successful ligands 
identified for this Buchwald−Hartwig sulfamidation.

Of the promising ligands, one was favoured as it was not bound 
by IP and was therefore more than 10-fold cheaper than the 
original ligand. This ligand was carried through to the optimisation 
process, where a design of 19 experiments was performed to 
determine the best reaction conditions. The factors investigated 
included metal loading, ligand loading, and stoichiometry of the 
second starting material.

The use of PCA and DoE to explore alternative catalysts and 
ligands for this Buchwald Hartwig reaction identified a number of 
alternative catalytic systems with a potential to reduce the costs 
for the process by more than 14-fold. The use of PCA allowed 
informed rational decision making and provided a more cost-
effective process.

6 Software: MODDE 10.1; Umetrics, part of Sartorium Stedim Biotech: 
Umeå, Sweden, 2014, for all experimental designs. SIMCA 13; Sartorius 
Stedim Data Analytics AB: Umeå, Sweden, 2013, for Principal Component 
Analysis. http://umetrics.com

 
Buchwald Hartwig reaction.Scheme 5

http://umetrics.com
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PCA map of monodentate ligands for all experiments from the Suzuki Miyaura reaction coloured red (0%) to green (100%).Figure 18

 

Replicate plot for Buchwald Hartwig reaction.Figure 19

 
Coefficient plot for the model for conversion at the final sample (S6) in the DoE investigating bidentate phosphines in the 
Buchwald Hartwig reaction.

Figure 20
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Contour plots for Buchwald Hartwig reaction.
Abbreviations: pPC is Phosphine PC1; pP2 is Phosphine PC2; pP3 is Phosphine PC3; sPC is Solvent PC1; sP2 is Solvent 
PC2; sP3 is Solvent PC3; Add is K2CO3, none (0) or Trifluoroacetic acid, Cat is Ru(p-cymene)Cl dimer or IrCp*Cl dimer; 
Pd(Acetate) is Pd(OAc)2; Pd(dba) is Pd2dba3; Sol(A) is Solvent A and Sol(B) is Solvent B.

Figure 21

 

PCA map of bidentate ligands for initial design for the Buchwald−Hartwig sulfamidation coloured red (0%) to green (100%).Figure 22

 

PCA map of ligands for the Buchwald−Hartwig sulfamidation coloured red (0%) to green (100%).Figure 23
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Conclusion
DoE is an efficient tool for the development of chemical 
processes. In conjunction with PCA, DoE is able to investigate 
discrete factors such as solvents and ligands in a semi-continuous 
manner, allowing links to be made between the chosen materials. 
Applying DoE with PCA can significantly reduce the number of 
experiments in a rational and focused manner. Depending on 
complexity, a fully optimised process can be defined with typically 
2 to 4 iterations of a design. An initial larger design of 19 to 35 
experiments is typical with subsequent refinements using 7 to 

19 experiments each to define the “sweet spot”. DoE combined 
with PCA will enable the rational development of complex 
chemical processes in fewer experiments than other approaches. 
DoE should not be used without considering the chemistry, the 
products, the impurities and the ultimate scale up of a final 
commercial process.

Supporting Information
A more detailed explanation of PCA and how to combine it with 
DoE is included in the supporting information along with an 
explanation of the terminology used in DoE.
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