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High-Throughput Screening Assay Datasets
from the PubChem Database

Abstract

Availability of high-throughput screening (HTS) data in the public domain offers
great potential to foster development of ligand-based computer-aided drug
discovery (LB-CADD) methods crucial for drug discovery efforts in academia and
industry. LB-CADD method development depends on high-quality HTS assay data,
i.e., datasets that contain both active and inactive compounds. These active
compounds are hits from primary screens that have been tested in concentration-
response experiments and where the target-specificity of the hits has been
validated through suitable secondary screening experiments. Publicly available
HTS repositories such as PubChem often provide such data in a convoluted
way: compounds that are classified as inactive need to be extracted from the
primary screening record. However, compounds classified as active in the primary
screening record are not suitable as a set of active compounds for LB-CADD
experiments due to high false-positive rate. A suitable set of actives can be derived
by carefully analysing results in often up to five or more assays that are used to
confirm and classify the activity of compounds. These assays, in part, build on each
other. However, often not all hit compounds from the previous screen have been
tested. Sometimes a compound can be classified as ‘active’, though its meaning is
‘inactive’ on the target of interest as it is ‘active’ on a different target protein. Here,
a curation process of hierarchically related confirmatory screens is illustrated based
on two specifically chosen protein use-cases. The subsequent re-upload procedure
into PubChem is described for the findings of those two scenarios. Further, we
provide nine publicly accessible high quality datasets for future LB-CADD method
development that provide a common baseline for comparison of future methods
to the scientific community. We also provide a protocol researchers can follow to
upload additional datasets for benchmarking.
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Introduction

The development of ligand-based computer-aided drug discovery
(LB-CADD) methods for in silico (virtual) high-throughput
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screening (HTS) shows promising results for identifying potential
hit compounds, i.e., compounds that share a biological activity
of interest [1]. With the popularity gain of HTS in academia, the
need for LB-CADD method development continues to increase
[2,3]. The cost of an HTS screen correlates nearly linearly with
the number of physically screened compounds. LB-CADD has the
potential to reduce these costs in a resource-limited academic
environment by helping to prioritize which compounds to include
in a screening campaign. However, LB-CADD method development

depends on the availability of reliable HTS assay datasets to study
the relationship of ligand structure and biological activity. It is
a challenge to identify suitable refined datasets for LB-CADD
benchmarking that are available to the research community.
Frequently in both industry and academia, proprietary datasets
are not disclosed to the research community for use in LB-CADD
benchmarking and methods development. Therefore, novel
methods cannot be directly compared to existing algorithm
implementations and scientific progress is difficult to gauge.
In other research fields, e.g., machine learning, standardized
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datasets are available and serve as foundation for evaluation
and benchmarking of novel algorithms. Examples are the MNIST
database for hand-written digits and UCI Machine Learning
Repository [4,5]. These datasets provide a common ground for
testing new methods and allowing for easy comparison of novel
and previously established approaches.

Compound data repositories host libraries of
molecular compounds and associated biological
activities

PubChem is a public repository providing HTS experiment results
containing biological activities for several hundred thousand
of compounds tested against different biological targets [6-
8]. It provides a platform to host target-related HTS datasets.
PubChem is maintained by the National Center for Biotechnology
Information (NCBI), a division of the National Library of Medicine,
which is part of the National Institutes of Health (NIH). Over
1,000,000 bioassays for more than 9,000 protein targets can be
accessed online contributed by more than 70 small molecule
and RNAI screening centers and research laboratories. It is also
supported by over 300 small molecule vendors contributing
to the growing compound database of PubChem worldwide.
Vendors include US government-funded institutions, research
laboratories pharmaceutical companies, and collaborators
hosting chemical biology databases. Other HTS repositories,
such as ChEMBL or BindingDB, are alternatives to PubChem with
different philosophies of annotation and evaluation of chemical
biology datasets with their respective databases. A review of
these HTS repositories can be found here [9-13].

False positive rate in primary HTS experiments is
high

Typically, primary HTS experiments categorize small molecules as
hit, inactive, or unspecified about the desired biological activity.
However, depending on the design of the HTS experiment, there
are many other reasons why a compound might be designated as
hit ranging from activity of the compound an undeclared target
in the cell to optical interference. Therefore, primary screens
are only a first iteration that reduces the available compound
library to a smaller set that can be interrogated in more detail.
As compounds are tested without replication (singleton?) and
the cut off for activity is typically loose to minimize the number
of false negatives, the false positive rate can be high. Although
outliers are common in HTS experiments, statistically robust
methods not sensitive to outliers are necessary for hit selection,
e.g., z*-score, SSMD*, B-score, and quantile-based methods
[14]. Confirmatory screens act as a validation filter by testing
hit compounds with multiple replications of the experiment,
recording concentration response curves, test hit compounds
with an identical assay setup but in the absence of the putative
target protein, and sometimes exclude even compounds that act
on the target protein but not selectively.

Hierarchical confirmatory screening experiments
validate primary hit compounds

The biological assay database of PubChem allows for the
deposition of primary as well as confirmatory HTS experiments.
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Due to the requirement from funding agency on data sharing,
primary screening results from NIH funded HTS projects were
often deposited to PubChem prior the deposition of confirmatory
assays and counter screens. Confirmatory assays seek to establish
the relationship between chemical structure and a defined
biological

outcome (SAR). Confirmatory assays applications range from
validating active compounds identified in the primary screen,
over the target confirmation through orthogonal assays, and
determination of specificity through testing against other
subtypes of the target protein or related proteins. For molecular
probe development, confirmatory assays are used to investigate
a smaller subset of often similar compounds to investigate
the SAR around the given scaffold further. A hierarchy of
confirmatory assays is established when results of dependent
confirmatory screens are analysed. In progressed stages of the
hierarchy, concentration response experiments provide values
for half maximal effective concentration (EC50) or inhibition
(IC50) in addition to the determined binary active/inactive
outcome. Despite of multiple update mechanisms provided by
the PubChem system, datasets regarding the same HTS assay
project but deposited under different time lines are sometimes
not sufficiently summarized. Upon completion of the HTS project,
a curation process is necessary to incorporate all experimental
data from different stages of the assay project and provide a
dataset with the ultimate bioactivity outcomes.

Previous studies underline importance of chemical
data curation for LB-CADD modelling

In a previous study, we assembled nine datasets from HTS
campaigns representing major families of drug target proteins
for benchmarking LB-CADD methods see (Table 1). Emphasis
was placed on biological target diversity and the high quality HTS
activity obtained through confirmatory screen validation. These
collated datasets provided the foundation for an extensive LB-
CADD benchmarking study using the cheminformatics framework
BCL: ChemlInfo [15]. For the present manuscript, we collaborate
with PubChem to make these datasets easily accessible for all
researchers.

These datasets were selected with the goal to cover a wide-
range of protein target classes. Each target class is represented
by a sampled chemical space, spanned by the screened
molecules evaluated within related HTS assay experiments.
Primary and confirmatory screens were curated from PubChem
and this curation process represent a tool for more systematic
benchmarking of novel LB-CADD algorithms. For this manuscript,
each curated dataset was re-assembled and aligned by CIDs before
being uploaded into PubChem. Datasets marked with an asterisk
in Table 1 have been modified with respect to our previous study
due to compound alignment by common substructure overlap
rather than PubChem identifier (CID).

Significance

LB-CADD is particularly attractive in the resource-limited
environment of academia as it reduces the cost and increases
quality of drug discovery and/or probe development. Quantitative
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Table 1 Listing of datasets containing curated compounds uploaded to PubChem.

Protein Target Target Class Internal ID Number of Actives PubChem AID
Orexinl Receptor GPCR SAID_435008 234%* 743306
M1 Muscarinic Receptor agonists GPCR SAID_1798 188 652178
M1 Muscarinic Receptor antagonists GPCR SAID_435034 447* 1053187
Potassium lon Channel Kir2.1 lon Channel SAID_1843 172 743120
KCNQ2 potassium channel lon Channel SAID_2258 287* 1159610
Cav3 T-type Calcium Channels lon Channel SAID_463087 703 1053190
Choline Transporter Transporter SAID_488997 256* 1053196
Serine/Threonine Kinase 33 Kinase Inhibitor SAID_2689 172 743321
Tyrosyl-DNA Phosphodiesterase Enzyme SAID_485290 292 489007
NPY-Y1 Receptor GPCR SAID_1040 801 1159609
NPY-Y2 Receptor GPCR SAID_793 699 1159608

structure-activity-relationship (QSAR) models developed in
LB-CADD are only as good as the data quality used for training
such models. Thus, there is a pressing need to develop and
systematically employ HTS assay record curation protocols helpful
in the pre-processing of any chemical dataset. This manuscript
highlights difficulties when working with HTS experimental data
in the public domain and illustrates the curation process on two
chosen examples targets as well as the re-upload of the new
datasets into PubChem.

Establishing a dataset “gold standard” for benchmarking novel
LB-CADD methods is important for testing performance of new
algorithms in respect to the complexity of the chemical space
and for different biological targets. It also counters a trend that
newly developed methods are tested on proprietary datasets
which creates difficulties when reproducing results and reduces
transparency when comparing methodological advances in
LB-CADD method development. As chemical space differs in
complexity for each protein target, it is imperative for new LB-
CADD methods to be benchmarked on representative high
quality datasets. The here described curation process has the
potential to provide a wide range of higher quality datasets freely
accessible to the research field.

Materials and Methods

Curation process based on hierarchy of
confirmatory high-throughput screens validates
active compounds

The following curation process evaluates the description of
PubChem assays, identifies the PubChem assay ID (AID) of the
primary screen and discusses the validation and classification
of active compounds from confirmatory screens. Confirmatory
screens can be subdivided into the categories “confirming” and
“descriptive”. “Confirming” assays validated a compound as active
at a declared molecular target (e.g., testing the compounds in the
presence and absence of the declared target). The application of
“confirming” assays results in identification of a set of validated
hits.

The second sub-category is “descriptive”. Typically, “descriptive”
assays occupy a position in the hierarchy downstream from
the confirmatory assays. An example of a descriptive assay
is @ “counter screen” against another molecular target. Since
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the compound activity has been validated, it is viewed as a
validated hit. Additional data add to our understanding of the
compound’s activity. e.g., a compound could be demoted from
“active” to “inactive” based on a descriptive assay. However,
this would be in the context of a previously declared intent (e.g.,
antagonists of the NPY Y1 receptor) and a gating criterion (e.g.,
50-fold selective against Y1). Such criteria are commonly used
but need to be highlighted in the context of curating a data set.
Here, validated hits are active at the declared target but can be
declared “inactive” within the context of the curated dataset
when additional “descriptive” data is taken into consideration. To
construct a final dataset, the inactive compounds are taken from
the corresponding primary assay. However, the authors would like
to emphasize that this manuscript does not endorse or vouch for
the applied HTS methods, given assay results or interpretations
of the mentioned assays below. The here described curation
process merely utilizes the assay outcomes given by the assay
providers and the screening facilities.

Results

High-throughput screens validate active
compounds associated with NPY — Y1 and Y2
HTS screens

PubChem provides publicly available biological assay results for a
diverse set of protein targets. For the scope of this manuscript, we
chose neuropeptide Y (NPY) receptor type 1 and 2, (Y1 and Y2).
These receptors are members of a larger family of NPY receptors
(Y1, Y2, Y4, Y5) which are part of the family of G-protein-coupled
receptors (GPCR) [16,17]. As their name suggests, the receptors
are effectors of the neuropeptide neurotransmitter NPY, studies
have implicated these receptors in diverse biological events,
including feeding, alcoholism, anxiety and depression, pain
perception, immunity and inflammation, vascular remodeling
hypothermia, and bone and energy metabolism [18-25]. Due
to the varied role of these receptors in human disease and
physiology, the identification of high-affinity selective probes
that target each receptor subtype may provide novel tools for the
study of NPY-related pathologies

Case study: curating primary cell-based high-throughput
screening assay for antagonists of the Y1 receptor: In this
case study, the PubChem assay AID1040 tests compounds
for their ability to act as antagonists of the NPY receptor Y1.
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A cell line transfected with Y1 and a cyclic-nucleotide gated
channel (CNGC) was used to measure Y1 antagonism by the test
compound. The cells were treated with the B-adrenergic receptor
agonist, isoproterenol, to activate adenylate cyclase, thus
increasing cytosolic cyclic adenosine monophosphate (cAMP)
concentrations, and therefore increasing CNGC activity. Elevated
CNGC activity decreases the cell membrane potential, which is
measured using a membrane potential-sensitive fluorescent
probe. Because the Y1 receptor is Gi-coupled, addition of the NPY
counteracts isoproterenol action resulting in a decrease in CNGC
activity. Atested compound thatisan Y1 antagonist will counteract
NPY action, thus the isoproterenol-evoked high level of cAMP will
be maintained and high CNGC activity will be preserved. This
primary assay AID1040 tested 196,255 compounds and identified
1,990 actives. A subset of 1,195 hit compounds from the set of
1,990 active compounds was investigated further by the following
two confirmatory screens. AID1254 repeated the primary screen
experiment to validate activity for the hit compounds. AID1255
tested selectivity of hit compounds by removing antagonists of
the Y2 receptor. This assay used a cell line transfected with the Y2
receptor and a cyclic-nucleotide gated channel (CNG) was used to
measure receptor antagonism through CNGC opening. This assay
serves as an elimination of “false positives” in this context that
could result from modulation of other biological protein targets.
The findings of AID1255 resulted in 332 compounds active
against Y2. 252 compounds were ultimately confirmed through
AID1254 as active and selective. The following two HTS screens
(AID1277 and AID1278) represent a second level of validation
and further investigated a smaller fraction of just 63 compounds.
AID1277 determines concentration response curves for a subset
of compounds identified as active in the previous experiments.
Multiple criteria for testing the compounds had to be fulfilled.
The compounds were active against the primary screen
(AID1040). Compounds confirmed inactive by the confirmatory
screen AlD1254 were excluded. Additionally, these compounds
had to be inactive when assessing Y2 antagonism through
AID1255. The final set of active compounds is comprised of 801
active molecules, taken from the actives of AID1040, subtracting
inactive compounds from AID1254, subtracting actives from
AID1255, subtracting inactive from AID1277, and actives from
AID1278 as shown in Figure 1. ‘Active’ compounds within this
context are defined as a combination of active and selective
compounds for Y1.

Case study: curating primary cell-based high-throughput
screening assay for agonists of the Y2 receptor: This study
investigated small molecules for antagonism of NPY receptor Y2.
A cell line transfected with Y2 and CNGC using a primary screening
assay similar to the assay described for Y1 receptor, above. This
primary screen AID793) tested 140,092 molecules for activity and
identified 1,384 hit compounds. The confirmatory screen AID1257
evaluated a subset of 707 from the 1,384 molecules in more
detail. It confirmed activity of compounds that were identified as
actives in the primary screen AID793 with the same experimental
assay setup. 707 compounds were tested in more detail and 479
molecules were confirmed inactive, and thus subtracted from the
initial set of active compounds. On the other hand, AID1256 was
designed to identify non-selective antagonists among the actives

© Under License of Creative Commons Attribution 3.0 License
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of the primary screen because of inhibition of the Y1 receptor. The
same set of 707 compounds was screened and 135 compounds
were removed as non-selective. The next stage of confirmatory
screens evaluated a more specific subset of 119 compounds. Assay
AlID1279 determined whether compounds are active against the
primary screen (AID793), activity for antagonism towards Y2 had
to be confirmed in AID1257, and whether the compound showed
activity in the cell-based HTS assay measuring Y1 antagonism
(AID 1256). Out of the 119 actives molecules 74 compounds were
confirmed and thus excluded from the pool of overall actives.
The second assay (AID1272) screened the same 119 compounds
as AID1279 but evaluated each molecule by different criteria:
The compounds had to be active in the primary screen AID793.
This activity had to be confirmed in AID1257. And lastly, these
compounds had to be inactive with respect to measuring Y1
antagonism (AID 1256). A total of 119 compounds were screened
and 47 inactive compounds were confirmed and removed. Next,
a layer of counter screens AlD2210, AlD2212, AID2224, involved
in this series evaluated 89 compounds for cross-findings among
actives for agonism of Y1 and antagonism for Y2 and inhibition
of cyclic nucleotide gated ion channel (CNGC) activity. Active
compounds found through those assays were excluded from the
set of final actives. Finally, as assays for late stage results from
probe development efforts to identify antagonists of NPY- Y2,
AID2211 and AID2220 were set up with the same conditions as
AlIDs 793, 1256, 1257, 1272, and 1279. Non-selective Y2 agonists
and compounds acting as Y1 agonists were excluded. Figure 2
shows a detailed flow chart depicting the individual compound
subtractions.

In summary, the assembly of the final actives dataset, an
ensemble of 699 active compounds was determined by selecting
the actives from the primary screen and excluding inactive
compounds of AID1257 and AID1272, as well as subtracting
actives from AID1256, AID1279, AID2210, AID2211, AID2212,
AID2220, and AID222.

Discussion
Uploading of curated datasets into PubChem

PubChem provides access to biological assay data e.g., through
its Power User Gateway (PUG) [26]. Data queries can be sent
via XML to request AID data for molecule in a specific format
(e.g., SDF, SMILES) as well as the associated biological assay data
containing metadata, and activity related data. Every compound is
uniquely identified by its compound identifier (CID) or substance
identifier (SID). Sets of molecules can be downloaded in respect
to a given AID. These identifier in conjunction with the activity
categorization of a compound allows for the curation of sets of
molecules of confirmatory screens as discussed, the two case
studies (see above).

Through the hierarchical relationship of primary and confirmatory
assay experiments, compounds can be aligned by their respective
CID. Dependent on the outcome on each hierarchy level,
compounds can be classified as active or inactive depending on
the result of the last involved confirmatory screen. The ensemble
of molecules that satisfies all levels of the HTS hierarchy
represents the final curated dataset.
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AID1040

Primary cell-based high-throughput screening assay for antagonists of NPY-Y1
All(196255 ) Active[1990) Inactive(194265)

~

AlID1254
Cell-based high-throughput confirmation
assay for antagonists of neuropeptide Y
receptor Y1 (NPY-Y1)

neuropeptide Y receptor Y1 (NPY-Y1): Cell-

All(1195) Active(252) Inactive(943)

AID1277

AID1255
Counter screen assay for antagonists of

based high throughput assay to measure
NPY-Y2 antagonism
All(1195) Active(332) Inactive(863)

Dose response cell-based screening assay
for antagonists of neuropeptide Y
receptor Y1
Active(14) Inactive(49)

All(63)

AID1278
counter screen assay for NPY-Y1: assay to
measure NPY-Y2 antagonism
All(63) Active(8) Inactive(55)

Final set
Active(801)

symbolize a specific subtraction of compounds.

Figure1 Curation process of AID1040. The center green arrow represents the initial set of active compounds while red arrows

J

AID793

All(140092) Active(1384) Inactive(138709)

Primary cell based high-throughput screening assay for antagonists of neuropeptide Y receptor Y2 (NPY-Y2)

~

AID1257
confirmation assay for antagonists NPY-Y2
All(707) Active(228) Inactive(479)

Counter screen for antagonists of NPY-Y2:
assay to measure NPY-Y1 antagonism.
All(707) Active(135) Inactive(572)

AID1256

AID 1272

screening assay for antagonists of NPY-Y2
All(119) Active(72) Inactive(47)

AID1279
counterscreen for NPY-Y2: assay to

assay for potentiators or agonists of NPY-Y2
All(6) Active(2) Inactive(4)

AlD2220

measure NPY-Y1 antagonism
All{119) Active(74) Inactive(45)

AID2210
assay for agonists of NPY-Y2

counterscreen for potentiators or agonists of NPY-Y2: assay for
inhibitors of cyclic nucleotide gated ion channel (CNGC) activity.

AlD2224

AlI(89) Active(18) Inactive(71)

AlI(89) Active(7) Inactive(82)

AID2211
counterscreen for potentiators or agonists of NPY-Y2:
assay for potentiators or agonists of NPY-Y1
All(6) Active(1) Inactive(5)

counterscreen for agonists of NPY-Y2:
assay for agonists of NPY-Y1
All(89) Active(14) Inactive(75)

AlD2212

Final set
Active(699)

Figure 2 Curation process of AID793. The center green arrow leads to the final set of active compounds while red arrows and
numbers and type of compounds in red mark compound subtractions.

J

The PubChem Upload system (pubchem.ncbi.nlm.nih.gov/
upload) offers a mechanism to submit the newly curated set of
compounds into PubChem. After specifying which compounds
are involved by specified by SID identifiers the aligned hierarchy
of compound activities through all involved HTS results can be
uploaded. Once the submission was successful and approved by
a PubChem curator the newly curated dataset is accessible to the
public and can be shared with the research community.

Conclusions
High-quality HTS datasets are important for LB-CADD method

5

development. However, results of various validation experiments
for an assay project are often reported separately in PubChem
and final set of inactive, inconclusive, and conformed active
compounds is mostly lacked in the database. The goal of this
work is to provide an overview of a curation process, starting
from primary screens and their associated confirmatory screens,
building a hierarchical structure through multiple related assay
experiments. It needs to be emphasized that the applied HTS
methodologies, the given assay results, and interpretations are
taken ‘asis’. Thus, curation processrelies on a high-quality standard
for experimental data given by assay providers and the screening

This article is available in: http://cheminformatics.imedpub.com/



facilities. The assembly and upload of the curated dataset to the
PubChem database is discussed based on two specifically chosen
protein target use-cases. The upload of curated datasets into
PubChem is described and thus supports the development of a
publicly available database for benchmarking LB-CADD methods.
Ultimately, availability of such datasets will eliminate the need
to test LB-CADD methods on proprietary datasets allowing ready
reproduction and comparison of results. Furthermore, such
curation projects help to enhance the utility of HTS data in the
PubChem database by summarizing and excluding false positives

© Under License of Creative Commons Attribution 3.0 License
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and experimental artifacts at various assay stages, and thus to
highlight confirmed biological compounds.
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