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The development of ligand-based computer-aided drug discovery 
(LB-CADD) methods for in silico (virtual) high-throughput 
screening (HTS) shows promising results for identifying potential 
hit compounds, i.e., compounds that share a biological activity 
of interest [1]. With the popularity gain of HTS in academia, the 
need for LB-CADD method development continues to increase 
[2,3]. The cost of an HTS screen correlates nearly linearly with 
the number of physically screened compounds. LB-CADD has the 
potential to reduce these costs in a resource-limited academic 
environment by helping to prioritize which compounds to include 
in a screening campaign. However, LB-CADD method development 

Abstract
Availability of high-throughput screening (HTS) data in the public domain offers 
great potential to foster development of ligand-based computer-aided drug 
discovery (LB-CADD) methods crucial for drug discovery efforts in academia and 
industry. LB-CADD method development depends on high-quality HTS assay data, 
i.e., datasets that contain both active and inactive compounds. These active 
compounds are hits from primary screens that have been tested in concentration-
response experiments and where the target-specificity of the hits has been 
validated through suitable secondary screening experiments. Publicly available 
HTS repositories such as PubChem often provide such data in a convoluted 
way: compounds that are classified as inactive need to be extracted from the 
primary screening record. However, compounds classified as active in the primary 
screening record are not suitable as a set of active compounds for LB-CADD 
experiments due to high false-positive rate. A suitable set of actives can be derived 
by carefully analysing results in often up to five or more assays that are used to 
confirm and classify the activity of compounds. These assays, in part, build on each 
other. However, often not all hit compounds from the previous screen have been 
tested. Sometimes a compound can be classified as ‘active’, though its meaning is 
‘inactive’ on the target of interest as it is ‘active’ on a different target protein. Here, 
a curation process of hierarchically related confirmatory screens is illustrated based 
on two specifically chosen protein use-cases. The subsequent re-upload procedure 
into PubChem is described for the findings of those two scenarios. Further, we 
provide nine publicly accessible high quality datasets for future LB-CADD method 
development that provide a common baseline for comparison of future methods 
to the scientific community. We also provide a protocol researchers can follow to 
upload additional datasets for benchmarking.
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High-Throughput Screening Assay Datasets 
from the PubChem Database

depends on the availability of reliable HTS assay datasets to study 
the relationship of ligand structure and biological activity. It is 
a challenge to identify suitable refined datasets for LB-CADD 
benchmarking that are available to the research community. 
Frequently in both industry and academia, proprietary datasets 
are not disclosed to the research community for use in LB-CADD 
benchmarking and methods development. Therefore, novel 
methods cannot be directly compared to existing algorithm 
implementations and scientific progress is difficult to gauge. 
In other research fields, e.g., machine learning, standardized 
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datasets are available and serve as foundation for evaluation 
and benchmarking of novel algorithms. Examples are the MNIST 
database for hand-written digits and UCI Machine Learning 
Repository [4,5]. These datasets provide a common ground for 
testing new methods and allowing for easy comparison of novel 
and previously established approaches.

Compound data repositories host libraries of 
molecular compounds and associated biological 
activities
PubChem is a public repository providing HTS experiment results 
containing biological activities for several hundred thousand 
of compounds tested against different biological targets [6-
8]. It provides a platform to host target-related HTS datasets. 
PubChem is maintained by the National Center for Biotechnology 
Information (NCBI), a division of the National Library of Medicine, 
which is part of the National Institutes of Health (NIH). Over 
1,000,000 bioassays for more than 9,000 protein targets can be 
accessed online contributed by more than 70 small molecule 
and RNAi screening centers and research laboratories. It is also 
supported by over 300 small molecule vendors contributing 
to the growing compound database of PubChem worldwide. 
Vendors include US government-funded institutions, research 
laboratories pharmaceutical companies, and collaborators 
hosting chemical biology databases. Other HTS repositories, 
such as ChEMBL or BindingDB, are alternatives to PubChem with 
different philosophies of annotation and evaluation of chemical 
biology datasets with their respective databases. A review of 
these HTS repositories can be found here [9-13].

False positive rate in primary HTS experiments is 
high
Typically, primary HTS experiments categorize small molecules as 
hit, inactive, or unspecified about the desired biological activity. 
However, depending on the design of the HTS experiment, there 
are many other reasons why a compound might be designated as 
hit ranging from activity of the compound an undeclared target 
in the cell to optical interference. Therefore, primary screens 
are only a first iteration that reduces the available compound 
library to a smaller set that can be interrogated in more detail. 
As compounds are tested without replication (singleton?) and 
the cut off for activity is typically loose to minimize the number 
of false negatives, the false positive rate can be high. Although 
outliers are common in HTS experiments, statistically robust 
methods not sensitive to outliers are necessary for hit selection, 
e.g., z*-score, SSMD*, B-score, and quantile-based methods 
[14]. Confirmatory screens act as a validation filter by testing 
hit compounds with multiple replications of the experiment, 
recording concentration response curves, test hit compounds 
with an identical assay setup but in the absence of the putative 
target protein, and sometimes exclude even compounds that act 
on the target protein but not selectively.

Hierarchical confirmatory screening experiments 
validate primary hit compounds
The biological assay database of PubChem allows for the 
deposition of primary as well as confirmatory HTS experiments. 

Due to the requirement from funding agency on data sharing, 
primary screening results from NIH funded HTS projects were 
often deposited to PubChem prior the deposition of confirmatory 
assays and counter screens. Confirmatory assays seek to establish 
the relationship between chemical structure and a defined 
biological

outcome (SAR). Confirmatory assays applications range from 
validating active compounds identified in the primary screen, 
over the target confirmation through orthogonal assays, and 
determination of specificity through testing against other 
subtypes of the target protein or related proteins. For molecular 
probe development, confirmatory assays are used to investigate 
a smaller subset of often similar compounds to investigate 
the SAR around the given scaffold further. A hierarchy of 
confirmatory assays is established when results of dependent 
confirmatory screens are analysed. In progressed stages of the 
hierarchy, concentration response experiments provide values 
for half maximal effective concentration (EC50) or inhibition 
(IC50) in addition to the determined binary active/inactive 
outcome. Despite of multiple update mechanisms provided by 
the PubChem system, datasets regarding the same HTS assay 
project but deposited under different time lines are sometimes 
not sufficiently summarized. Upon completion of the HTS project, 
a curation process is necessary to incorporate all experimental 
data from different stages of the assay project and provide a 
dataset with the ultimate bioactivity outcomes.

Previous studies underline importance of chemical 
data curation for LB-CADD modelling
In a previous study, we assembled nine datasets from HTS 
campaigns representing major families of drug target proteins 
for benchmarking LB-CADD methods see (Table 1). Emphasis 
was placed on biological target diversity and the high quality HTS 
activity obtained through confirmatory screen validation. These 
collated datasets provided the foundation for an extensive LB-
CADD benchmarking study using the cheminformatics framework 
BCL: ChemInfo [15]. For the present manuscript, we collaborate 
with PubChem to make these datasets easily accessible for all 
researchers.

These datasets were selected with the goal to cover a wide-
range of protein target classes. Each target class is represented 
by a sampled chemical space, spanned by the screened 
molecules evaluated within related HTS assay experiments. 
Primary and confirmatory screens were curated from PubChem 
and this curation process represent a tool for more systematic 
benchmarking of novel LB-CADD algorithms. For this manuscript, 
each curated dataset was re-assembled and aligned by CIDs before 
being uploaded into PubChem. Datasets marked with an asterisk 
in Table 1 have been modified with respect to our previous study 
due to compound alignment by common substructure overlap 
rather than PubChem identifier (CID).

Significance
LB-CADD is particularly attractive in the resource-limited 
environment of academia as it reduces the cost and increases 
quality of drug discovery and/or probe development. Quantitative 
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structure-activity-relationship (QSAR) models developed in 
LB-CADD are only as good as the data quality used for training 
such models. Thus, there is a pressing need to develop and 
systematically employ HTS assay record curation protocols helpful 
in the pre-processing of any chemical dataset. This manuscript 
highlights difficulties when working with HTS experimental data 
in the public domain and illustrates the curation process on two 
chosen examples targets as well as the re-upload of the new 
datasets into PubChem.

Establishing a dataset “gold standard” for benchmarking novel 
LB-CADD methods is important for testing performance of new 
algorithms in respect to the complexity of the chemical space 
and for different biological targets. It also counters a trend that 
newly developed methods are tested on proprietary datasets 
which creates difficulties when reproducing results and reduces 
transparency when comparing methodological advances in 
LB-CADD method development. As chemical space differs in 
complexity for each protein target, it is imperative for new LB-
CADD methods to be benchmarked on representative high 
quality datasets. The here described curation process has the 
potential to provide a wide range of higher quality datasets freely 
accessible to the research field.

Materials and Methods
Curation process based on hierarchy of 
confirmatory high-throughput screens validates 
active compounds
The following curation process evaluates the description of 
PubChem assays, identifies the PubChem assay ID (AID) of the 
primary screen and discusses the validation and classification 
of active compounds from confirmatory screens. Confirmatory 
screens can be subdivided into the categories “confirming” and 
“descriptive”. “Confirming” assays validated a compound as active 
at a declared molecular target (e.g., testing the compounds in the 
presence and absence of the declared target). The application of 
“confirming” assays results in identification of a set of validated 
hits.

The second sub-category is “descriptive”. Typically, “descriptive” 
assays occupy a position in the hierarchy downstream from 
the confirmatory assays. An example of a descriptive assay 
is a “counter screen” against another molecular target. Since 

the compound activity has been validated, it is viewed as a 
validated hit. Additional data add to our understanding of the 
compound’s activity. e.g., a compound could be demoted from 
“active” to “inactive” based on a descriptive assay. However, 
this would be in the context of a previously declared intent (e.g., 
antagonists of the NPY Y1 receptor) and a gating criterion (e.g., 
50-fold selective against Y1). Such criteria are commonly used 
but need to be highlighted in the context of curating a data set. 
Here, validated hits are active at the declared target but can be 
declared “inactive” within the context of the curated dataset 
when additional “descriptive” data is taken into consideration. To 
construct a final dataset, the inactive compounds are taken from 
the corresponding primary assay. However, the authors would like 
to emphasize that this manuscript does not endorse or vouch for 
the applied HTS methods, given assay results or interpretations 
of the mentioned assays below. The here described curation 
process merely utilizes the assay outcomes given by the assay 
providers and the screening facilities.

Results
High-throughput screens validate active 
compounds associated with NPY – Y1 and Y2 
HTS screens
PubChem provides publicly available biological assay results for a 
diverse set of protein targets. For the scope of this manuscript, we 
chose neuropeptide Y (NPY) receptor type 1 and 2, (Y1 and Y2). 
These receptors are members of a larger family of NPY receptors 
(Y1, Y2, Y4, Y5) which are part of the family of G-protein-coupled 
receptors (GPCR) [16,17]. As their name suggests, the receptors 
are effectors of the neuropeptide neurotransmitter NPY, studies 
have implicated these receptors in diverse biological events, 
including feeding, alcoholism, anxiety and depression, pain 
perception, immunity and inflammation, vascular remodeling 
hypothermia, and bone and energy metabolism [18-25]. Due 
to the varied role of these receptors in human disease and 
physiology, the identification of high-affinity selective probes 
that target each receptor subtype may provide novel tools for the 
study of NPY-related pathologies

Case study: curating primary cell-based high-throughput 
screening assay for antagonists of the Y1 receptor: In this 
case study, the PubChem assay AID1040 tests compounds 
for their ability to act as antagonists of the NPY receptor Y1. 

Protein Target Target Class Internal ID Number of Actives PubChem AID
Orexin1 Receptor GPCR SAID_435008 234* 743306

M1 Muscarinic Receptor agonists GPCR SAID_1798 188 652178
M1 Muscarinic Receptor antagonists GPCR SAID_435034 447* 1053187

Potassium Ion Channel Kir2.1 Ion Channel SAID_1843 172 743120
KCNQ2 potassium channel Ion Channel SAID_2258 287* 1159610

Cav3 T-type Calcium Channels Ion Channel SAID_463087 703 1053190
Choline Transporter Transporter SAID_488997 256* 1053196

Serine/Threonine Kinase 33 Kinase Inhibitor SAID_2689 172 743321
Tyrosyl-DNA Phosphodiesterase Enzyme SAID_485290 292 489007

NPY-Y1 Receptor GPCR SAID_1040 801 1159609
NPY-Y2 Receptor GPCR SAID_793 699 1159608

Table 1 Listing of datasets containing curated compounds uploaded to PubChem.



2017
Vol. 3 No. 1: 1

4© Under License of Creative Commons Attribution 3.0 License         

Chemical informatics
ISSN 2470-6973

A cell line transfected with Y1 and a cyclic-nucleotide gated 
channel (CNGC) was used to measure Y1 antagonism by the test 
compound. The cells were treated with the -adrenergic receptor 
agonist, isoproterenol, to activate adenylate cyclase, thus 
increasing cytosolic cyclic adenosine monophosphate (cAMP) 
concentrations, and therefore increasing CNGC activity. Elevated 
CNGC activity decreases the cell membrane potential, which is 
measured using a membrane potential-sensitive fluorescent 
probe. Because the Y1 receptor is Gi-coupled, addition of the NPY 
counteracts isoproterenol action resulting in a decrease in CNGC 
activity. A tested compound that is an Y1 antagonist will counteract 
NPY action, thus the isoproterenol-evoked high level of cAMP will 
be maintained and high CNGC activity will be preserved. This 
primary assay AID1040 tested 196,255 compounds and identified 
1,990 actives. A subset of 1,195 hit compounds from the set of 
1,990 active compounds was investigated further by the following 
two confirmatory screens. AID1254 repeated the primary screen 
experiment to validate activity for the hit compounds. AID1255 
tested selectivity of hit compounds by removing antagonists of 
the Y2 receptor. This assay used a cell line transfected with the Y2 
receptor and a cyclic-nucleotide gated channel (CNG) was used to 
measure receptor antagonism through CNGC opening. This assay 
serves as an elimination of “false positives” in this context that 
could result from modulation of other biological protein targets. 
The findings of AID1255 resulted in 332 compounds active 
against Y2. 252 compounds were ultimately confirmed through 
AID1254 as active and selective. The following two HTS screens 
(AID1277 and AID1278) represent a second level of validation 
and further investigated a smaller fraction of just 63 compounds. 
AID1277 determines concentration response curves for a subset 
of compounds identified as active in the previous experiments. 
Multiple criteria for testing the compounds had to be fulfilled. 
The compounds were active against the primary screen 
(AID1040). Compounds confirmed inactive by the confirmatory 
screen AID1254 were excluded. Additionally, these compounds 
had to be inactive when assessing Y2 antagonism through 
AID1255. The final set of active compounds is comprised of 801 
active molecules, taken from the actives of AID1040, subtracting 
inactive compounds from AID1254, subtracting actives from 
AID1255, subtracting inactive from AID1277, and actives from 
AID1278 as shown in Figure 1. ‘Active’ compounds within this 
context are defined as a combination of active and selective 
compounds for Y1.

Case study: curating primary cell-based high-throughput 
screening assay for agonists of the Y2 receptor: This study 
investigated small molecules for antagonism of NPY receptor Y2. 
A cell line transfected with Y2 and CNGC using a primary screening 
assay similar to the assay described for Y1 receptor, above. This 
primary screen AID793) tested 140,092 molecules for activity and 
identified 1,384 hit compounds. The confirmatory screen AID1257 
evaluated a subset of 707 from the 1,384 molecules in more 
detail. It confirmed activity of compounds that were identified as 
actives in the primary screen AID793 with the same experimental 
assay setup. 707 compounds were tested in more detail and 479 
molecules were confirmed inactive, and thus subtracted from the 
initial set of active compounds. On the other hand, AID1256 was 
designed to identify non-selective antagonists among the actives 

of the primary screen because of inhibition of the Y1 receptor. The 
same set of 707 compounds was screened and 135 compounds 
were removed as non-selective. The next stage of confirmatory 
screens evaluated a more specific subset of 119 compounds. Assay 
AID1279 determined whether compounds are active against the 
primary screen (AID793), activity for antagonism towards Y2 had 
to be confirmed in AID1257, and whether the compound showed 
activity in the cell-based HTS assay measuring Y1 antagonism 
(AID 1256). Out of the 119 actives molecules 74 compounds were 
confirmed and thus excluded from the pool of overall actives. 
The second assay (AID1272) screened the same 119 compounds 
as AID1279 but evaluated each molecule by different criteria: 
The compounds had to be active in the primary screen AID793. 
This activity had to be confirmed in AID1257. And lastly, these 
compounds had to be inactive with respect to measuring Y1 
antagonism (AID 1256). A total of 119 compounds were screened 
and 47 inactive compounds were confirmed and removed. Next, 
a layer of counter screens AID2210, AID2212, AID2224, involved 
in this series evaluated 89 compounds for cross-findings among 
actives for agonism of Y1 and antagonism for Y2 and inhibition 
of cyclic nucleotide gated ion channel (CNGC) activity. Active 
compounds found through those assays were excluded from the 
set of final actives. Finally, as assays for late stage results from 
probe development efforts to identify antagonists of NPY- Y2, 
AID2211 and AID2220 were set up with the same conditions as 
AIDs 793, 1256, 1257, 1272, and 1279. Non-selective Y2 agonists 
and compounds acting as Y1 agonists were excluded. Figure 2 
shows a detailed flow chart depicting the individual compound 
subtractions.

In summary, the assembly of the final actives dataset, an 
ensemble of 699 active compounds was determined by selecting 
the actives from the primary screen and excluding inactive 
compounds of AID1257 and AID1272, as well as subtracting 
actives from AID1256, AID1279, AID2210, AID2211, AID2212, 
AID2220, and AID222.

Discussion
Uploading of curated datasets into PubChem
PubChem provides access to biological assay data e.g., through 
its Power User Gateway (PUG) [26]. Data queries can be sent 
via XML to request AID data for molecule in a specific format 
(e.g., SDF, SMILES) as well as the associated biological assay data 
containing metadata, and activity related data. Every compound is 
uniquely identified by its compound identifier (CID) or substance 
identifier (SID). Sets of molecules can be downloaded in respect 
to a given AID. These identifier in conjunction with the activity 
categorization of a compound allows for the curation of sets of 
molecules of confirmatory screens as discussed, the two case 
studies (see above).

Through the hierarchical relationship of primary and confirmatory 
assay experiments, compounds can be aligned by their respective 
CID. Dependent on the outcome on each hierarchy level, 
compounds can be classified as active or inactive depending on 
the result of the last involved confirmatory screen. The ensemble 
of molecules that satisfies all levels of the HTS hierarchy 
represents the final curated dataset.



2017
Vol. 3 No. 1: 1

5 This article is available in: http://cheminformatics.imedpub.com/

Chemical informatics
ISSN 2470-6973

 

 

 

 

 

 

 

 

 

 

 

 
Curation process of AID1040. The center green arrow represents the initial set of active compounds while red arrows 
symbolize a specific subtraction of compounds.

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 
Curation process of AID793. The center green arrow leads to the final set of active compounds while red arrows and 
numbers and type of compounds in red mark compound subtractions.

Figure 2

The PubChem Upload system (pubchem.ncbi.nlm.nih.gov/
upload) offers a mechanism to submit the newly curated set of 
compounds into PubChem. After specifying which compounds 
are involved by specified by SID identifiers the aligned hierarchy 
of compound activities through all involved HTS results can be 
uploaded. Once the submission was successful and approved by 
a PubChem curator the newly curated dataset is accessible to the 
public and can be shared with the research community.

Conclusions
High-quality HTS datasets are important for LB-CADD method 

development. However, results of various validation experiments 
for an assay project are often reported separately in PubChem 
and final set of inactive, inconclusive, and conformed active 
compounds is mostly lacked in the database. The goal of this 
work is to provide an overview of a curation process, starting 
from primary screens and their associated confirmatory screens, 
building a hierarchical structure through multiple related assay 
experiments. It needs to be emphasized that the applied HTS 
methodologies, the given assay results, and interpretations are 
taken ‘as is’. Thus, curation process relies on a high-quality standard 
for experimental data given by assay providers and the screening 
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facilities. The assembly and upload of the curated dataset to the 
PubChem database is discussed based on two specifically chosen 
protein target use-cases. The upload of curated datasets into 
PubChem is described and thus supports the development of a 
publicly available database for benchmarking LB-CADD methods. 
Ultimately, availability of such datasets will eliminate the need 
to test LB-CADD methods on proprietary datasets allowing ready 
reproduction and comparison of results. Furthermore, such 
curation projects help to enhance the utility of HTS data in the 
PubChem database by summarizing and excluding false positives 

and experimental artifacts at various assay stages, and thus to 
highlight confirmed biological compounds.

Acknowledgements
Work in the Meiler laboratory is supported through NIH (R01 
GM080403, R01 GM099842, R01DK097376) and NSF (CHE 
1305874).

Competing Interests
The authors declare that they have no competing interests.



2017
Vol. 3 No. 1: 1

7 This article is available in: http://cheminformatics.imedpub.com/

Chemical informatics
ISSN 2470-6973

References
1	 Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational 

methods in drug discovery. Pharmacol Rev 66: 334-395. 

2	 Vlaar CP, Hernandez L (2009) Symposium review: drug discovery, 
development and clinical research in academia. P Health Sci J 283: 
268-273. 

3	 Verkman AS (2004) Drug discovery in academia. Am J Physiol Cell 
Physiol 28: 465-474. 

4	 LeCun Y, Cortes C (2010) MNIST handwritten digit database.

5	 Frank A, Asuncion A (2010) UCI Machine Learning Repository. Irvine, 
CA: University of California, School of Information and Computer 
Science.

6	 Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, et al. (2009) PubChem: 
a public information system for analyzing bioactivities of small 
molecules. Nucleic Acids 37: 623-633. 

7	 Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, et al. (2012) PubChem’s 
BioAssay database, Nucleic Acids Res 40: 400-412.

8	 Wang Y, Suzek T, Zhang J, Wang J, He S, et al. (2014) PubChem 
BioAssay: 2014 update. Nucleic Acids Res 42: 1075-1082. 

9	 Overington JP (2009) ChEMBL: large-scale mapping of medicinal 
chemistry and pharmacology data to genomes. American Chemical 
Society, p: 238. 

10	 Papadatos G and Overington JP (2014) The ChEMBL database: a 
taster for medicinal chemists. Future Med Chem 6: 361-364. 

11	 Willighagen EL, Waagmeester A, Spjuth O, Ansell P, Williams AJ, et al. 
(2013) The ChEMBL database as linked open data, J Cheminformatics 
5: 1-12. 

12	 Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-
accessible database of experimentally determined protein-ligand 
binding affinities. Nucleic Acids Res 35: 198-201. 

13	 Tiikkainen P, Franke L (2012) Analysis of Commercial and Public 
Bioactivity Databases. J Chem Inf Model 52: 319-326. 

14	 Zhang XD (2011) Illustration of SSMD, z score, SSMD*, z* score, and 
t statistic for hit selection in RNAi high-throughput screens. Biomol 
Screen 16: 775-785.

15	 Butkiewicz M, Lowe EW, Mueller R, Mendenhall JL, Teixeira PL, et 
al. (2013) Benchmarking ligand-based virtual high-throughput 
screening with the PubChem database. Molecules 18: 735-756. 

16	 Dumont Y, Martel JC, Fournie A, St-Pierre S, Quirion R (1992) 
Neuropeptide Y and neuropeptide Y receptor subtypes in brain and 
peripheral tissues. Prog Neurobiol 38: 125-167. 

17	 Bettio A, Beck-Sickinger AG (2001) Biophysical methods to study 
ligand-receptor interactions of neuropeptide Y. Pept Sci 60: 420-437. 

18	 Heilig M, Thorsell A (2002) Brain Neuropeptide Y (NPY) in Stress and 
Alcohol Dependence. Rev Neurosci 13: 85-94.

19	 Heilig M (2004) The NPY system in stress, anxiety and depression. 
Neuropeptides 38: 213-224. 

20	 Hokfelt T, Brumovsky P, Shi T, Pedrazzini T, Villar M (2007) NPY and 
pain as seen from the histochemical side. Peptides 28: 365-372. 

21	 Wheway J, Herzog H, Mackay F (2007) NPY and receptors in immune 
and inflammatory diseases. Curr Top Med Chem 7: 1743-1752. 

22	 Kuo LE, Zukowska Z (2007) Stress, NPY and vascular remodeling: 
Implications for stress-related diseases. Peptides vol 28: 435-440. 

23	 Abe K, Tilan JU, Zukowska Z (2007) NPY and NPY receptors in vascular 
remodeling. Curr Top Med Chem 7: 1704-1709. 

24	 Jaszberenyi M, Bujdoso E, Kiss E, Pataki I, Telegdy G (2002) The role 
of NPY in the mediation of orexin-induced hypothermia. Regul Pept 
104: 55-59. 

25	 Nguyen AD, Herzog H, Sainsbury A (2011) Neuropeptide Y and 
peptide YY: important regulators of energy metabolism. Curr Opin 
Endocrinol Diabetes Obes 18: 56-60. 

26	 Kim S, Thiessen PA, Bolton EE, Bryant SH (2015) PUG-SOAP and PUG-
REST: web services for programmatic access to chemical information 
in PubChem. Nucleic Acids Res, p: 396.


