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Introduction
The chemical library belongs to the biggest research assets 
of any pharmaceutical company. Such screening libraries are 
typically between one to five million compounds [1]. Whether 
the full library or only subsets are tested in HTS campaigns and 
how such subsets are composed depends on target areas, assay 
designs and company’s strategy. HTS and especially in vitro and 
in vitro assays of individual compounds are costly in terms of 
substance consumption. Therefore, all libraries bleed out. Instead 
of resynthesizing old compounds, companies set up campaigns 
to evolve the libraries into new chemical space following one of 
three strategies, namely, buying from chemical catalogs, buying 
readily available proprietary compounds or designing novel 
proprietary chemistry. Typical design concept for novel libraries 
is to create structurally diverse compounds with Lipinski drug-like 
[2] or lead-like [3,4] properties. 

Since chemical space is almost infinite with approximately 1060 
compounds with a molecular weight lower than 500 Da, [5] and 
currently only about 10 to 20 million compounds relevant to drug 
discovery are covered by commercial sources and proprietary 
repositories, the question arises: which of numerous imaginary 
libraries are relevant and which not? 
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One way to address the question of target relevance is to start 
from known chemical matter and to apply core modifications like 
changes of ring size or type, or shifting nitrogen and functional 
groups. Alternatively, one can design libraries purely chemistry-
driven, based on attractive chemical scaffolds, synthesis routes 
or concepts like escaping from flatland, [6] giving diversity and 
serendipity a chance. Combined with IP space analysis both 
routes can yield viable libraries.

We were now interested if it would be possible to find the 
right target or target family for a subset of our internal library 
designs, which were originally driven by feasible chemistry and 
attractive novelty. Or otherwise, if it would be possible to derive a 
rationale how to modify such a library design in order to tailor the 
respective library to a specific target or target family. We expect 
that a library designed with a target family in mind possesses a 
higher chance to hit the relevant chemical space, especially, since 
there are many indications for existence of privileged scaffolds [7]. 
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We know also that computational methods, especially high 
throughput methods like structure- or ligand-based virtual 
screening or target-family likeness filters, are far from perfect 
and will at maximum provide certain enrichments. Therefore, we 
decided to combine computational methods, which provide us 
with a high degree of automation and throughput, with optimum 
use of expert knowledge and guidance. Nevertheless, we have 
to stress that starting libraries, as well as libraries designed with 
help of the process described in this article, have to be strictly 
novel, which requires intervention of an expert and cannot be 
automated. 

Hence the question arises: how to find the matching target for the 
library, or at least for some library compounds. In the last years 
many researchers looked into this topic mostly from a different 
perspective, namely, how to control target selectivity of a lead 
compound and avoid adverse effects, [8-10] how to identify 
hidden opportunities in drug repurposing projects, [11-13] or 
how to support the difficult but promising design of multitarget 
drugs [14-16]. Despite other rationale for target fishing presented 
here, additional information on potential off-target activity or 
selectivity of compounds from a starting library is a welcome 
side-product.

Computational target prediction methods published to date 
[13,17] can be classified as ligand-based, network-based, side-
effect-based, or protein-structure-based depending on the data 
used [18]. Ligand-based methods connect similarity measures 
with binding profiles for similar compounds in order to predict 
potential targets. Network-based methods incorporate the 
knowledge about ligand and target interactions, which are then 
represented as networks. Side-effect-based approaches utilize 
the information about off-target activities of similar drugs. 

Potential targets can also be predicted by protein structure-based 
methods including docking, protein-ligand interactions or protein 
binding site comparisons, but this is a tedious manual procedure 
solely based on profound expert knowledge. 

Quite new is the inverse approach-to create ligand bioactivity 
fingerprints encoding the hit status of compounds from HTS 
campaigns [19,20]. In combination with conventional ligand 
fingerprints those allow to identify chemically similar ligands that 
should have similar bioactivity profiles. 

Ligand-based methods are fast and easy to use, but they are 
limited to search spaces of highly similar compounds. To a certain 
extent, they are able to extrapolate into new chemical space via 
scaffold hopping. 

Docking, on the other hand, is dependent on the availability of 
protein crystal structures. For about half of the targets relevant to 
pharmaceutical research there are no crystal structures available. 
Docking, in principle, can identify new chemical matter, but it is 
challenging with respect to protein pre-processing and ligand 
ranking [18]. 

Pharmacophore methods, finally, are somewhere in between. 
To some extent they can extrapolate by scaffold or substituent 
hopping. On the other hand, pharmacophore methods often 
provide the user with an overwhelming manifold of hypotheses 

that without detailed SAR knowledge cannot be separated into 
meaningful and chance models. 

Weighting the pros and cons of the former concepts we decided 
for a hybrid approach. We filter down the published - highly 
incomplete and sparsely populated - pharmacological universe 
by fast ligand-based methods to a manageable subset. We then 
process a user-selected subset of the ligand hit sets related to 
specific targets by docking. Our approach is as far as possible 
automated for efficient identification of potential biological 
targets with co-crystal structures. The general process starts 
with multiple automated ligand-based similarity searches in 
the ChEMBL [21] database, which contains chemical structures 
of small molecules with their associated biological test results 
and targets. Consequently, grouping of hits based on biological 
target, extraction of structures from Protein Data Bank [22] via 
the accession codes and automated docking simulations are 
performed. 

The approach is novel in the way how multiple computational 
methods are combined in an efficient process, providing the 
computational chemist with a holistic picture of potential hits 
based on the available knowledge. It is implemented in a way to 
automate the tedious manual work, to provide an expert with the 
capability to interact with results and to allow him to concentrate 
on decision-making. 

Despite a high degree of automation of this process, the crucial 
step will always be the final one, where the real value is generated 
by the modeling expert, who will make decisions based on visual 
inspection and his experience in order to adjust the combinatorial 
library to selected target(s) by adding, replacing or removing 
chemical substituents, or exchanging a scaffold. As a result, one 
or more novel targeted libraries can be designed.

By our approach we will lose all those targets our library would 
show some activity on but where the published ligands are 
too dissimilar in 2D metrics. A part of those targets could be 
“rescued” by direct docking into the complete crystallized target 
space, but even then we would still miss some targets due to the 
shortcomings of rigid receptor docking.

We do not aim for the identification of a complete targetome for 
our library, but for the identification of targets that fit into the 
pathways of our medical indications. We will therefore not aim 
for the highest-ranked target, but for the one best fitting to our 
project portfolio.

It is also important to understand that we do not describe a 
process of automated ligand- and target-based virtual screening. 
Instead, the similarity searches are applied as a coarse filter to 
identify targets from which the expert selects targets of interest. 
Docking is applied to confirm target fit based on pose consistency 
between cocrystallized ligand, ChEMBL hits and docked library 
compounds and has to be seen as a sharper filter to finally 
identify the most appropriate target for our library. In this paper 
we present a concept and a first implementation of the process 
that can be easily adjusted to individual needs, like adding a 
corporate database of chemical structures and biological data, 
extending the range of similarity search methods, exchanging 
protein preparation and docking method or adding automated 
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pharmacophore modeling. Though implemented in a commercial 
software solution, the described protocol can be also realized 
using other tools and software.

Methods and Process Description
The basic concept of our target-fishing approach relies on the 
“similarity principle”, [23] according to which similar molecules 
exert similar biological activities. Therefore, a combinatorial 
library in its whole, its subsets or individual compounds, that are 
similar to known actives, should be able to point at targets of 
interest. Promising targets, which were identified indirectly using 
ligand similarity, are then selected for further investigation via 
automated docking. Conceptually, this resembles the process of 
experimental target validation using chemical probes.

The automated protocol constructed and executed using the 
workflow software Pipeline Pilot [24] can be summarized into 
four steps, namely, database preparation, similarity search, 
analysis and docking, as it is shown schematically in Figure 1. In a 
fifth step, the computational chemists will visually inspect results 
and draw informed decisions.

Database preparation
From the broad range of data from the scientific literature, 
including biological activities for drug-like bioactive compounds as 
available in the public database ChEMBL [25], information about 
chemical structures, identifiers, assays and targets is extracted 
and saved into the appropriate file formats for the similarity 
searches in step 2. (The data in this work were based on ChEMBL 
version 14 (release from July 2012) comprising almost 14 million 
experimental results for about 1.9 million compounds, whereas 
the current release 23 from May 2017 contains around 2.1 
million compounds). The database structure of ChEMBL consists 
of about 50 tables, which are mapped by primary keys and 
contain information about compound, source, drug properties, 
experimental data, target, mechanism of binding, etc. In order to 
access the most important entity types from the database, SQL 
queries were constructed and implemented in Pipeline Pilot to 
extract the data about compounds, targets, assays and activities, 
as well as adjustable filters for parameters like organism, activity 
type, activity threshold and confidence score.

Further investigation of the ChEMBL database revealed that there 
are more than 3000 different activity types measured in hundreds 
of different units. Among them the top-represented activity types, 
which were used in our study, are potency, EC50, IC50, inhibition, 
Ki. Moreover, grouping of compounds by organisms revealed 
1621 species on which they were tested. Thus, we implemented 
a number of default filters for the most represented activity types 
(IC50, EC50, Ki, Kd), units (M, nM, µM, mM) and organisms (human, 
mouse and rat) as well as for the activity threshold (10 µM). Those 
filters can be easily set via Pipeline Pilot protocol checkboxes and 
variables.

To ensure as much as possible that targets are assigned to correct 
assays, only records with ChEMBL confidence score higher than 
7 were selected. The confidence score is assigned during the 
manual curation process by the data extractors and reflects 
assay-target relationships. It ranges from 0 to 9, where 0 means 
uncurated data and 9 equals to high degree of confidence. 

The application of above-mentioned filters reduced the amount 
of ChEMBL entries from 12.3 to 3.8 million, which represents 
764,419 unique registered molecules. The compounds and the 
information about targets and assays were saved into separate 
files. Thus, all additional information was joined to compounds 
after the similarity search. We apply a predefined hierarchical 
file structure for the purposes of documentation and to facilitate 
further re-analyses and follow-up studies. Finally, the extracted 
ChEMBL data were converted into the appropriate structure 
formats required for the chosen similarity methods as described 
in the next step.

Similarity search
For each compound of a combinatorial library ligand-based virtual 
screens against database compounds are performed. Multiple 
methodologies are applied to make maximum use of different 
similarity measures. Final hit lists are combined by MAX-rank voting 
as described by Baber et al. [26] and Whittle et al. [27].

In this work we implemented three approaches, namely (i) atom-

Schematic visualization of the five workflow steps 
starting from database preparation and ending with 
docking results and visual interpretation. Here PP is 
Pipeline Pilot and SQL - Structured Query Language.

Figure 1
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based circular fingerprints ECFP4, (ii) non-linear Feature Tree 
descriptor FTrees and (iii) DBTOP topomer search similarities. 
Each of them represents structural and pharmacophoric features 
in a different and complementary way. 

The extended connectivity fingerprints ECFP4 describe the 
presence or absence of overlapping particular substructures [28]. 
The number 4 in the name corresponds to the effective diameter 
of the largest feature, thus the largest possible fragment has a 
width of 4 bonds. The Tanimoto coefficient is used as distance 
metric for scoring. 

DBTOP from Certara is a 3D similarity search where molecular 
structures are compared as sets of fragments (so-called 
topomers), which are characterized by CoMFA-like steric shape 
and pharmacophoric features [29]. One single rule-based 
conformation is generated for each fragment and oriented by 
open valence bond, while the rest is oriented again using a rule-
based scheme. Aligned fragments are then compared by their 
fields until the minimum topomeric difference between two 
molecules is identified.

The BioSolveIT FTrees method calculates the feature tree 
descriptor, which represents hydrophobic fragments and 
functional groups of the molecule and the way these groups are 
linked together [30]. The descriptors of two molecules are then 
compared to each other. 

ECFP4 and FTrees are available as Pipeline Pilot components, 
whereas DBTOP was run from the command line using Pipeline 
Pilot “Run on Server” component. Since we aim for target fishing 
and idea generation, we accept low overall ligand similarities and 
therefore limit hit lists of the individual searches by the maximum 
numbers of hits and not by similarity thresholds. 

The implemented Pipeline Pilot protocol allows a user to select 
similarity search methods via checkboxes and to set individual 
parameters for similarity threshold or number of top-hits to 
save. It automatically combines results of similarity searches and 
reports hits, their similarity scores as well as targets, activity and 
assay data.

Analysis and selection
Hits are grouped based on the targets against which they show 
activity. The results are presented as Pipeline Pilot HTML report 
comprised of an interactive bar chart, representing top targets 
and numbers of hits per target (Figure 2a).

The ranking order implemented here is disputable, since currently 
targets are sorted by number of hits identified, which yields a 
certain bias towards targets with higher numbers of congeneric 
compounds reported. Since the rank score bears a certain risk 
of missing interesting targets with small hit clusters, the user is 
able to set a threshold for the number of targets retrieved. Up 
to now, for each input library we were able to identify a set of 
interesting targets. Nevertheless, alternate scoring schemes 
taking into account, for instance, overall numbers of compounds 
tested, activity ranges, and numbers of congeneric series will be 
evaluated.

For convenient overview the bar chart is equipped with tooltips 

and hyperlinks, showing the full target name and hit counts for 
the different similarity measures. Since we are solely interested 
in targets with crystal structures, information about protein 
structure availability is also retrieved from RCSB Protein Data 
Bank [22] and summarized in the table next to the bar chart, see 
Figure 2a.

Furthermore, a click on any bar of the chart executes a Pipeline 
Pilot sub-protocol, which provides a second HTML report (Figure 
2b) containing table and attached structure grid view with 
detailed information about the hits, e.g., chemical structure, 
activity data, assay results or species on which they were tested. 
Moreover, the table area and the grid view are cross-linked and 
possess tooltips containing chemical structure and detailed assay 
information. This gives the user a quick overview of a certain 
target and its compounds as well as assists with further target 
selection. The desired targets can be preselected for docking in 
the next step using checkboxes.

Docking
Automated docking of library compounds, ChEMBL hits and 
cocrystallized ligand into the selected targets is performed. All 
available PDB structures for user-selected targets are downloaded 
by the workflow, i.e., often multiple crystal structures per target. 
For instance, the amount of structures deposited in PDB for cyclin-
dependent kinase 2 is more than 300. This poses a question how 
to prioritize the crystal structures for docking in an automated 
way. One quality criterion for a crystal structure, which can be 
easily accessed, is its resolution. On the other hand, docking 
may be still not successful, when it is done into a wrong protein 
conformation. Since residues of apo-structure (without bound 
ligand) may occupy parts of the binding pocket, we decided to 
limit our docking to holo-structures (ligand-bound). Furthermore, 
the presence of a ligand simplifies automated grid generation. 
Thus, top N holo-structures with the best resolution are selected 
for each target, where N is a number specified by the user. In 
case of multiple chains, always chain A is saved for each structure 
in order to simplify structural alignment. Alternative selection 
schemes could include target selection by ligand similarity or 
pocket shape diversity.

Ligand preparation was done in two steps. First, protonation 
states at pH 7.4 for co-crystallized ligand, ChEMBL hits and library 
compounds were calculated using the pKa module co-developed 
by Bayer and SimulationPlus [31] and implemented as Pipeline 
Pilot component “ADMET predictor” [32], while ring conformers, 
tautomers and stereoisomers were generated using Schrödinger 
LigPrep utility, release 9.8. 

An automatic docking procedure was applied using the 
Schrödinger script XGlide.py (version 3.7; v45017). The script 
performs automatic protein alignment and preparation, grid 
generation, re-docking of crystal structure ligands as well as 
docking of other compounds (here, library compounds and 
ChEMBL hits). For each selected target a separate directory 
is created containing subdirectories for crystal structures, 
prepared ligands and docking results. The script is executed 
from the command line using Pipeline Pilot component “Run on 
Server”. The following docking parameters were applied: protein 
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alignment, preparation and grid generation were turned on; 
ligand preparation was set to false, Glide standard precision (SP) 
was selected as the scoring function. The results for each target 
were saved as pose viewer files, which at the end are copied into 
one folder for the analysis.

Inspection
The final step in the process is by intention not automatic, and 
probably can never be. The computational chemist loads docking 
poses for targets of interest for visualization and analysis. In the 
first step he inspects the quality of re-docking of co-crystallized 

ligands and identifies commonalities and differences in the 
binding modes to individual crystal structures of each target. In 
the second step, he inspects docking of ChEMBL hits to verify the 
interaction hot spots. Third, he analyzes the library compounds 
with good and bad docking scores and judges the plausibility 
of the binding modes obtained. Finally, he will either consider 
biological testing of library compounds on targets of interest, 
or modifying the library proposals in order to optimize their 
interactions to a certain target, or generation of a completely 
new library proposal.

 
b) 

 

The example of Pipeline Pilot protocol results: a) HTML report with cross-linked bar chart and 20 top-ranked targets derived from the 
combination of three similarity search methods (DBTOP, ECFP4 and FTrees) using the designed oxadiazoles library as a starting point, 
see Results Section for more details; b) example of an HTML report with cross-linked table and grid view of the hits for one specific 
target, here for HTH-type transcriptional regulator EthR.

Figure 2
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Results
Validation of similarity search process
Of the three purely automated technical steps, namely database 
preparation, similarity search and docking including grid 
preparation, the most critical one for the overall performance 
is the identification of targets via the similarity searches. We 
therefore preformed a retrospective study in ChEMBL to test for 
the performance of finding targets via searches with libraries 
known to be active on those targets.

For this, we extracted ChEMBL data for compounds tested on 
all species with reported IC50, EC50, Ki, Kd and activity units of 
nM or µM. No activity threshold filter was set. The applied 
filters reduced the number of ChEMBL entries to 851,915 which 
constitute 327,520 unique molecules and 17568 different DOC_
IDs [Fussnote einfügen: DOC_ID, TARGET_ID, MOLECULE_ID all 
have the same identifier name CHEMBL_ID in different tables of 
the ChEML database]. From those, 633 sets based on identical 
DOC_ID were derived containing between 100 and 150 molecules 
each, representing our chemical libraries. This is justified by the 
fact that compounds from one publication normally more or less 
represents a congeneric series. The 633 sets are connected to 
264 different TARGET_IDs. We finally selected 22 DOC_ID sets 
which share their TARGET ID with 5 to 7 other documents (the 
distribution runs between 1 and 13 different documents per 
TARGET_ID). 

This setup allows us to perform - using the compounds from one 
document - a “library-based” similarity search. By those similarity 
searches we should then be able to re-find the target the search 
library is known to be active on, only based on similarity of the 
library compounds to the compounds in other documents on the 
target.

Detailed results are provided in Table S1 in ESI. The median 
numbers of documents identified are 45 for the combined search 
and 10, 43, and 7 for ECFP-4, DBTOP and Ftrees, respectively.1

We are thus always able to identify the targets of the library 
compounds even though the median similarities to the ChEMBL 
compounds are as expected quite low with 0.33 for ECFP-4, 139 
for DBTOP and 0.88 for Ftrees. With two exceptions all targets 
were identified by all three methods. Tyrosine-protein_kinase_
SYK (CHEMBL2599) was not found by ECFP-4 and Ftrees and 
Cytochrome_P450_2D6 (CHEMBL289) by ECFP-4.

Thus, we are consistently able to identify the target we were 
looking for, but not always at rank 1. Nevertheless, mean ranks 
of the test targets are 3.5 for ECFP-4, 8.7 for DBTOP, 5.8 for Ftrees 
and 1.4 for the consensus rank, which always ranks the search 
target rank 1 or 2. 

The hit rate and especially the ranking of the search targets is 
even better than the expected outcome, i.e., that the similarity 

1 During the step-wise preparation of the library sets only representative 
subsets were kept via first occurance filters. This resulted in data 
reduction and therefore the final numbers of DOC-IDs per target were 
always lower than the numbers in the unfiltered dataset. These results 
in higher numbers of documents retrieved.

searches are performed to identify a shortlist of targets for 
selection by the expert, not to identify the rank 1 targets.

Process application examples
The process described in Methods and Process Description was 
developed to identify potential targets for existing chemistry-
driven combinatorial library proposals and to modify the proposals 
in a way that they can directly contribute to early projects at Bayer 
Pharmaceuticals Global Drug Discovery. The process is applied to 
in-house libraries that are proprietary and cannot be disclosed 
here. Therefore, we had to design a proof of concept case study 
for this publication. The downside of this approach is that we are 
not able to present experimental data for our prospective library 
proposals (the starting library or the derivatives for the targets we 
hit). As a starting point we chose a publication from the Journal 
of Medicinal Chemistry from 2012 which describes structure-
based drug design for a series of potent 1,2,4-oxadiazoles, which 
target M. tuberculosis transcriptional repressor EthR (see Figure 
3a for examples) [33]. We designed a combinatorial library, that 
is similar but distinct to the published compounds from ChEMBL, 
with the aim to demonstrate that the developed methodology 
is able (i) to recover the compounds from the publication and to 
show that EthR protein can be identified among the top targets, 
(ii) to identify potential new targets for our example library, (iii) 
to provide examples of target-fishing-based library modifications 
and (iv) to provide examples of the short-comings of such a fully 
automatic approach and to highlight the importance of expert 
interaction.

In particular, we introduced three changes to our library with 
respect to the library from the publication. First, we modified the 
piperidine ring to a cyclo-hexyl, i.e., shifted the nitrogen by one 
position. Second, we replaced the aliphatic lipophilic side chain 
by various R2 groups of different size, polarity and charge state, 
connected via nitrogen or amide bonds. Third, we introduced 
alternative lipophilic R1 groups at the only point of variation 
from the published library. Core definitions and examples for the 
publication and the library compounds are shown in Figures 3a 
and 3b, respectively.

Example of database preparation: Step 1 of the workflow is to 
search for similar compounds and their associated targets using 
the designed library as a reference. For now, ChEMBL data were 
extracted for compounds tested on all species with reported IC50, 
EC50, Ki, Kd and activity units of nM or µM. No activity threshold 
filter was set. The applied filters reduced the number of ChEMBL 
entries to 851,915 which constitute 327,520 unique molecules.

Example of similarity search: In step 2, similarity searches are 
performed. We used all three currently implemented methods, 
namely DBTOP, ECFP4 and FTrees as described in Methods. 400 
highest rank hits were saved for each metric, and additionally a 
consensus rank was calculated. The diagram in Figure 2a gives 
the list of the top 20 targets, associated with the results of the 
similarity searches, as interactive bar chart. Table S1 of Supporting 
Information provides more detailed information about target 
ranks according to the three similarity search methods and 
consensus rank; additionally, it lists the numbers of identified 
hits and PDB structures for each target. The targets in Table S1 
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are sorted by descending number of ligands identified by ECFP4 
similarity search. As mentioned earlier, the implemented ranking 
by number of hits per target may be biased towards the targets 
with large congeneric series.

Example of analysis: Step 3 is the first of two expert intervention 
steps. Target selection could be done automatically based on 
their ranks, but manual selection will allow to concentrate on 
targets relevant in the context of a company’s research portfolio.

The transcriptional repressor EthR was ranked number 7 by 
the consensus score, which combines the results of the three 
similarity search methods. The scoring according to ECFP4 method 
ranked EthR on position three. ECFP4 was able to identify all 33 

compounds from the publication, whereas FTrees found only 2 
and DBTOP none, underlining the necessity to apply multiple 
ligand-based search methods to obtain the complete picture. 
DBTOP is based on steric and pharmacophoric fields of the 
whole molecule and therefore is more susceptible to larger size 
differences between query and database molecules than FTrees, 
which abstracts the molecular fragments into pharmacophoric 
representations, or ECFP4 circular fingerprints, where the hits 
are dominated by occurrences of fragment features. Depending 
on library, contributions of different methods will differ. Some in-
house library screens, for instance, were dominated by DBTOP 
hits. It is a priori not obvious which similarity metric will dominate 
in the consensus hit list.

 
Schematic representation of cores and example compounds for: a) M. tuberculosis transcriptional repressor EthR inhibitor series 
from the publication of Flipo et al. [28]; b) combinatorial oxadiazole library.

Figure 3
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Figure 4 shows the example hits identified by different similarity 
search methods to underline this assumption. It is worth to note 
that similarity scores (see Table S2 of Supporting Information) as 
expected are quite low, pointing out that chemical modification 
of the library compounds guided by the final docking step might 
be needed.

As expected, the numbers of hits for the different search methods 
differ. But in addition, also the numbers of PDB structures retrieved 
differ. For instance, 33 PDB structures of 11-beta-hydroxysteroid 
dehydrogenase 1 are found using only ECFP4 (see Table S1), 
whereas the combination of three similarity methods retrieved 
38 PDB entries. The reason for this lies in the fact that all ECFP4 
hits are annotated with UniProt [34] identifier P28845 (human) 
whereas the combination of ECFP4 and FTrees resulted in hits, 
which were tested on human and mouse 11-beta-hydroxysteroid 
dehydrogenase 1 (UniProt identifiers P28845 and P50172, 
respectively). While the human sequence shares 79% identity 
to the mouse orthologue, there is high level of conservation of 
amino acids in the binding site. All ECFP4 hits share the same 
oxadiazole motif while FTrees identified two additional motifs 
(Figure 5). Again, it is strongly emphasized that it is advantageous 
to employ multiple ligand similarity metrics.

Our proof-of-concept target EthR is rank seven by consensus 
score and rank three by ECFP4 similarity search. In the following 
we will analyze the two top-ranked targets in more detail (see 
also Table S1), together with our target of interest, EthR (which 
would resemble the real-life situation with some targets in the 
list not being relevant for the current portfolio.

Example of docking: For step four we selected the two 
top-ranked targets for docking, namely, top-ranked target 
metabotropic glutamate receptor 5, second-ranked receptor 
smoothened homolog, and our proof-of-concept target HTH-
type transcriptional regulator EthR which is ranked seventh. 
The docking of our library compounds, ChEMBL hits and co-
crystallized ligands was performed using the fully automated 
XGlide procedure as described in Methods. A maximum of 2 
crystal structures per target were retrieved automatically. We 
had to extend the set by one more structure in the case of EthR, 
as described in the following.

Our decision objective for target fit is correct re-docking of the 
co-crystallized ligand, consistent docking of the ChEMBL hits and 

finally consistent docking of the library compounds or similarly 
decorated subsets thereof. We provide docking scores as a means 
of further confirmation of consistent placement, but not as a filter 
or design criterion per se. High docking scores are a strong hint 
for important interactions to the target matched, whereas low 
scores are not always correlated to weak binding interactions.

Helix-Turn-Helix-type (HTH-type) transcriptional 
regulator EthR
Currently there are 23 protein structure entries in RSCB protein 
data bank based on UniProt ID accession code P9WMC1 
(Mycobacterium tuberculosis). Since the number of structures for 
docking is actually a compromise between expected information 
gain and effort, two structures for docking were automatically 
selected from the 17 holo-structures available, based on crystal 
structure resolution. By default, we process two different crystal 
structures since modelling experience tells that using multiple 
target structures for rigid docking reduces the risk of missing 
important target information. We later added one additional 
structure, namely 3O8H, due to its different pocket shape and 
ligand-binding mode.

The hits found by ECFP4 are both agonists and antagonists with 
best EC50 of 60 nM and IC50 of 400 nM, respectively, i.e., highly 
active compounds.

G1M: An example where library fits well into the target: Docking 
of the library compounds into the first crystal structure 3G1M 
with a resolution of 1.7 Å yields in high docking scores and 
poses comparable to the co-crystallized ligand (IC50 of 500 nM, 
retrieved from PDB Bind [35]). An additional hydrogen bond 
to Asn176 can be observed between EthR and some of library 
compounds containing tertiary amine or amide linker attached 
to the oxadiazole-cyclohexane core (an example can be seen 
in Figure 6). In contrast, the co-crystallized ligand, which has 
an oxadiazole-piperidine scaffold, is missing a hydrogen bond 
donor at this position. Moreover, the analysis of the binding 
pocket around the ligand can provide further suggestions for 
compound modifications, e.g., for extended interactions into the 
hydrophobic pocket formed by Met102, Val152, Leu90.

3Q0W: differences in protein conformation and incomplete 
binding site setup: In contrast, docking into the second EthR 
structure (co-crystallized ligand has Ki of 400nM [35]) led to 

 
An example of two ChEMBL hits obtained by similarity search for the designed oxadiazole library using different similarity methods - 
compound 7 (inhibitor of anandamide aminohydrolase) was identified by DBTOP similarity and compound 8 (inhibitor of cytochrome 
P450) by FTrees and ECFP4.

Figure 4
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low-scored poses for our library compounds. It turned out that 
a cocrystallized glycerol molecule, that had not been removed 
by the automated protein preparation, was situated deep in the 
binding site, establishing hydrogen bond to Asn176 and blocking 
ligand entry.

After its removal, docking of all compounds was possible. 
Nevertheless, the poses are still quite inconsistent. The amide 
moiety for about half of the poses is located deep in the pocket 
and makes hydrogen bonds to Asn176 and Asn179, analogously 
to the 3G1M dockings shown in Figure 6, and for the other half 
it points out of the pocket. Such differences can be explained 
by conformational flexibility of the protein, which can be seen 

in comparison of the two EthR crystal structures (PDB codes 
3G1M and 3Q0W, the superimposition is shown in Figure S1, see 
Supporting Information). Slight but pronounced differences can 
be observed at the loop region (residues Asn93-Asp98), where 
the flip of Pro94 is accompanied by narrowing the entry channel, 
which sterically hinders the placement of substituents towards 
this loop in 3G1M.

3O8H: Alternate binding mode: Our library was intentionally 
designed to be chemically similar to the EthR inhibitor BDM41906 
[33] (PDB ID: 3SFI). 3G1M and 3SFI have the same overall shape, 
the library compounds dock consistently into both pockets 
(results are not shown). 

 
Exemplary ECFP4 hit 9 for human target 11-beta-hydroxysteroid dehydrogenase 1 and structurally different FTrees hits 10 and 11 for 
mouse protein.

Figure 5

 
HTH-type transcriptional regulator EthR (3G1M, light grey representation) with co-crystallized ligand (cyan) and docking solution for 
one library compound (magenta, glide SP score=-12.40).

Figure 6
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Nevertheless, closer inspection of EthR structures revealed a 
second set of crystal structures with considerably larger binding 
pocket. Such pocket enlargement is mainly caused by the flip of 
side chains of Thr121, Gln125, Trp138 and Phe184 (see Table S3 
for comparison of available EthR crystal structures).

Figure 7a shows the alignment of 3G1M and 3O8H along with 
interaction volumes generated by SiteMap [36]. As expected, 
cross-docking of the 3O8H ligand (IC50=580 nM) into the rigid 
3G1M receptor, without taking into account any induced fit 
effect, yields a completely different and wrong binding mode, 
where the aromatic sulfonamide is pointing out of the pocket 
(see Figure 7b).

About two thirds of the library members dock consistently to 
BDM41906. About one third, due to the pronounced pocket 
differences, dock inconsistently. Library members from both sets 
ignore the additional cavity available in 3O8H.

In summary, we were in fact able to identify EthR as a potentially 
interesting target based on ligand similarity and docking results 

 

a) 

ab) 

a) Alignment of crystal structures 3G1M (green residues) and 3O8H (cyan residues), protein ribbons are depicted in light grey. Amino 
acids with different side chain orientations responsible for change in pocket shape are shown as sticks. SiteMap [31] generated 
surfaces are shown in blue mesh for 3G1M and magenta mesh for 3O8H; b) Overlay of the crystallized 3G1M ligand (green), the 
crystallized_3O8H ligand (cyan) and the docking pose of the 3O8H ligand in 3G1M (magenta).

Figure 7

for our designed oxadiazole library. We have also demonstrated, 
that further optimization strategy largely depends on the choice 
of EthR crystal structure, since the pocket residues are the subject 
of conformational changes. Based on the docking results from 
both pocket shapes, we gained worthwhile additional information 
about flexible and rigid subpockets and key interaction features. 
If it were for our library extension campaign, we would now, 
based on the target information, slightly optimize the decoration 
of the initial library and additionally design a second library that 
targets the deep cavity available in 3O8H. We would cross-check 
the design for IP space and if necessary iteratively adjust to create 
novelty.

Metabotropic glutamate receptor 5
The highest ranked target according to ECFP4, the metabotropic 
glutamate receptor 5, is a class C G-protein-coupled receptor 
responding to the neurotransmitter glutamate. There is only 
one holo structure (PDB ID 4OO9) identified in PDB for the 
transmembrane ligand-binding domain, since earlier structural 
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studies had been restricted to the amino-terminal extracellular 
domain, providing little understanding of the membrane-
spanning signal transduction domain. 4OO9 is co-crystallized in 
complex with the negative allosteric modulator, mavoglurant.

The similarity searches for the library compounds identified 
in total 160 agonists and antagonists of the metabotropic 
glutamate receptor 5 using consensus scoring, with best affinity 
values of EC50=5 nM, IC50=130 nM, and Ki=150 nM. The ECFP4 
method ranked this target at the top position, while FTrees 
ranked it at the position three with 149 and 25 inhibitors being 
identified, respectively. There were no metabotropic glutamate 
receptor 5 inhibitors among top 25 targets identified by DBTOP 
method. The hits represent different structural clusters such as 

 
Representative hits for metabotropic glutamate receptor 5.Figure 8

 
Example docking solution of library compound (magenta ligand) using manual grid set up (glideSP=-10.33) into metabotropic 
glutamate receptor 5 structure 4OO9 (protein is shown as light grey cartoon). The crystal structure ligand is shown as cyan sticks.

Figure 9

piperidine-amides, piperidine-sulfonamides and spiro-hexyl-4,5-
dihydrooxazoles (see Figure 8 for examples).

4OO9: Failure of the automatic procedure: All steps of the 
automatic workflow technically proceeded well and compounds 
were successfully docked. However, a closer look at the crystal 
structure 4OO9 revealed that during automated protein 
preparation and docking, the docking grid was positioned 
around a co-crystallized small organic molecule coming from the 
experimental conditions, namely oleic acid, and not around the 
allosteric modulator mavoglurant [37]. Thus, the docking was 
performed into the wrong pocket (see Figure S2 of Supporting 
Information).
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The example of 4OO9 shows that the fully automated docking 
procedure has its drawbacks. Protein preparation and docking 
setup require user inspection and in certain cases manual 
correction. The effort nevertheless is acceptable, since the expert 
should be knowledgeable of the target in order to understand 
and to judge the observed ligand interactions. On the other hand, 
one could implement a mechanism to retrieve information about 
the actual ligand and its binding mode, and use it during the 
protein preparation step.

Docking into the manually prepared binding site reveals that our 
library compounds exhibit numerous interactions to the receptor 
similar to the crystal structure ligand, e.g., hydrogen bonds to Asn-
747 and Ser-809, and extend their interactions deeper into the 
pocket lined out by Arg-648 and Val-740 (see Figure 9), which can 
be further analyzed to guide possible compound modifications.

Smoothened homolog
The Smoothened (SMO) receptor is a key signal transducer in the 
Hedgehog (Hh) signalling pathway. SMO is classified as a class 
F (frizzled) G-protein-coupled receptor (GPCR). It contains the 
conserved seven-transmembrane helical fold common to the 
class A GPCRs and an unusually complex arrangement of long 
extracellular loops stabilized by four disulphide bonds.

The similarity search for the library compounds identified overall 
111 SMO inhibitors with a best IC50 of 16 nM, using consensus 
scoring. 103 hits arose from ECFP4 search and 20 hits from 
FTrees. All hits are piperidine-amides or piperidine-ureas, but 
again FTrees was able to detect more diverse compounds.

4JKV: Optimizing the library for the target: The 2.5 Å resolution 
crystal structure of the human SMO receptor contains the 

transmembrane domain together with antagonist LY2940680 15 
(see Figures 10 and 11), which binds the extracellular end of the 
seven-transmembrane-helix bundle via extensive contacts to the 
loops. Redocking reproduced the binding mode with an RMSD of 
0.52 Å.

Docking into Smoothened homolog resulted in many well-scored 
solutions for the ChEMBL hits and library compounds with 
consistent docking poses (see Figure 11 for examples).

Instead of the conserved hydrogen bond between the carbonyl 
group of ligand and Asn219, which is observed for most of the 
ChEMBL inhibitors and LY2940680, the library compounds form 
one or two (e.g., ligands with positively charged aliphatic ring like 
compound 16, see Figures 10 and 11) additional hydrogen bonds 
with the backbone carbonyl of Tyr394.

On the downside, most of the library compounds do not pi-stack 
to Phe484. Exceptions are, for instance, sulfonamides like 17 (see 
Figure 11). One of oxadiazole nitrogens of library compounds 
usually participates in hydrogen bonding to Arg400 analogous to 
the phtalazine nitrogens in the crystal structure [38], but none 
of the library compounds is able to fill the hydrophobic pocket 
occupied by the phtalazine core.

The observations about key interactions of LY2940680 15 and 
the ChEMBL compounds provide us ideas for possible library 
modifications in order to target SMO binding pocket optimally.

Figure 11b shows an example of hybrid compound 18 which has 
the oxadiazole replaced by phtalazine core while keeping the 
larger p-cyanophenyl and the positively charged pyrrolidino-
amide. The Glide SP docking score for 18 (-12.39) is virtually 
identical to 15 (-12.66). Alternate hetero-bicycle replacements 

 
SMO inhibitor crystal structure ligand LY2940680 15 (PDB code: 4JKV), two representative library compounds 16 and 17 and the 
modified hybrid compound 18.

Figure 10
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a)

a)

Docking into the smoothened (SMO) receptor (4JKV: protein is shown as light grey cartoon). a) redocked LY2940680 15 (cyan 
sticks) and docking poses of two library compounds 16 and 17 (green and magenta); b) LY2940680 15 (cyan) and the docking 
pose of modified hybrid 18 (green sticks), the phtalazine cores of both compounds are well-aligned.

Figure 11
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also fit well. Aromatic headgroups linked via sulfonamide or amide 
like in compound 17 (glideSP=-11.47), on the other hand, are able 
to participate in pi-stacking with Phe484. Overall, from the point 
of view of target interactions, there is a bunch of options, with 
similar but also better Lipinski properties than LY2940680 having 
a molecular weight of 512 Da and an AlogP of 4.56.

Conclusion
When planning for the extension of a compound library, one 
is confronted with a universe of synthesis options. The only 
limitations, thus, are one’s own creativity, lab and budget 
resources in order to transform the ideas into chemical libraries. 
Therefore, a rational concept to explore the options and pick 
the libraries with a certain probability to hit biological targets is 
desirable. Expert knowledge can guide the planning procedure. 
However, in such case the library design can be limited to the 
person’s experience around the projects he has worked on. 
Metrics like ligand efficiency allow to stay in an attractive property 
profile range but do not assist the selection of compounds 
amenable to target families of interest. Although drug-likeness or 
target class-likeness scores take into account overall similarity to 
known drugs or actives, substructure or global pharmacophore 
features are quite rough estimates of target family fit.

In this paper we therefore describe the productive implementation 
of a concept aiming, on one hand, to identify putative targets for 
a chemistry-driven library proposal and, on the other hand, to 
identify options for compound modifications in order to create 
new libraries better fitting to certain targets. This article reports 
on a designed virtual combinatorial library and hits identified by 
the workflow, as well as on library modification ideas without the 
desirable proof of synthesis and experimental testing.

The real in-house examples cannot be disclosed here, and 
the examples shown will not trigger any synthesis and testing 
at Bayer. Currently we are still not able to provide significant 
statistics about success rates of the described workflow due to its 
novelty and the long turn-around times for the process of library 
design, out-sourced chemical realization, registration and testing.

Our workflow aims to automate all tedious time-consuming 
technical steps and allow to concentrate on rational design. We 
always start with a chemistry-driven library carefully checked 
for novelty and end up with a proposal that again is checked for 
novelty as a part of the design procedure.

The workflow is divided into a set of protocols implemented in 
Pipeline Pilot that control the crucial steps, run automatically 
and require minimum user interaction which is productively 
used at Bayer Drug Discovery. The implementation described 
in this paper compares a virtual compound library to the 
chemical space represented in ChEMBL by multiple ligand-based 
similarity metrics, retrieves ligand and target information and 
presents the results in an intuitive representation to an expert, 
who then decides whether to proceed with ligand design for 
targets of interest. The protocol automatically retrieves PDB 
structures and sets up docking runs for the cocrystallized ligand, 
the ChEMBL compounds and library structures. The most time-
consuming step is, by design, the final one, i.e., the visual 

inspection by a computational chemist, who can further trigger 
library modifications or re-design. The system is easy to use and 
it is highly productive. The workflow is modular and can easily 
be extended to alternate database sources, similarity metrics, 
hit prioritization algorithms, or docking protocols. Due to its 
accessibility, the ChEMBL database was chosen as a source of 
biological and chemical information. However, incorporation of 
alternate data sources is obvious.

As expected, the first part of the process, which is strictly ligand-
based, is highly reliable and fast. The use of multiple similarity 
metrics is advantageous since various approaches represent 
chemical similarity differently, and the consensus-based 
assessment serves as a good basis for more detailed analysis of 
hits and their corresponding targets and for inspiring creativity 
in library design. The platform is open for the incorporation 
of alternate methods, e.g., shape-based screening or 
pharmacophore fingerprints. The current target ranking, which 
is based on the number of hits identified, is not optimal, since it 
favors large congeneric series. Thus, further modifications to the 
protocols are ongoing work.

It stands to reason that common challenges of structure-based 
drug design are especially relevant for an automated procedure, 
and special attention should be given to it. One of issues 
concerns the assignment of ligand protonation states, which 
nevertheless can be reliably estimated by modern pKa predictor 
software. Correct stereochemistry is more problematic. There 
are cases where stereochemistry of a PDB ligand is ambiguous; 
stereochemistry of ChEMBL compounds is not always explicitly 
defined, and library compounds may exist as racemates or with 
unknown configuration depending on a synthesis route. The 
best compromise here is to enumerate relevant stereoisomers 
and to let the binding pocket decide. Finally, we are faced with 
incorrect bond orders in a PDB ligand and unknown tautomer 
forms of ChEMBL or library compounds. Tautomerism is an issue 
still lacking a sound solution. It is dealt by rule-based generation 
and docking of sets of tautomers.

Another issue concerns the protein preparation step. As we 
have shown in this paper, automatic preparation will sometimes 
detect a wrong binding site or not remove small co-crystallized 
substances. In the current XGlide implementation, all crystal 
waters are removed. Therefore, a fraction of automatically created 
results has to be discarded and manually re-processed. Even if 
there is still room for improvement, we consider that currently 
XGlide is one of the best solutions for automatic preparation, 
protein alignment and docking.

The third step of docking and scoring also has its limitations which 
are well described in the literature. A consistent binding mode of 
library compounds is a necessary but not sufficient condition for 
a compound binding to a target, especially since docking scores 
are often misleading. These issues together with limitations of 
previous steps, e.g., complete removal of waters that sometimes 
provide important contacts to a target, are the main pitfalls of the 
automatic procedure. Thus, close visual inspection by an expert, 
who is knowledgeable of a target, will finally allow to judge the 
relevance of results.
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One could argue whether it is worth to use an automatic process 
with its numerous limitations. In our opinion, the advantages by 
far outweigh the risks. The process allows an expert to set up a 
query very easily and to put his time on analysis and re-design 
of the library. Walking through a full process takes about ten 
to thirty minutes for a set-up, about 4-8 h for data extraction 
and similarity search, and about 2 to 3 h for docking per crystal 

structure if parallelized (depending on the amount of compounds 
to be docked).

A final word to the expected output
With all known algorithmic and data quality limitations a final 
library and its assignment to a target will always be “only” an 
educated guess for a library with significantly enhanced chance 
to hit a target. Nevertheless, we feel that it is worth the effort.
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