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Introduction
Congestive heart failure is a condition in which the heart is unable 
to pump blood at a rate which is sufficient to meet the needs 
of different parts of the human body owing to the weakening 
of heart muscles. CHF may be brought about by coronary artery 
diseases, hypertension and valvular heart diseases [2,3]. The past 
history of heart attacks in a person (myocardial infarction) also 
becomes a factor in determining his/her susceptibility to CHF.

CHF is one of the major cardiovascular disorders [4] in the 
modern day world and may be attributed to a number of 
causes like sedentary lifestyles, poor dietary regimes, lack of 
physical exercise, obesity, smoking etc. CHF was found to affect 
approximately 23 million people worldwide in the year 2010 [5].

There is no proper diagnostic method which meets the gold 
standard for CHF. NICE (The National Institute for Health and Care 
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Abstract
Congestive Heart Failure is a growing menace spreading its jaws worldwide. As for 
all diseases, early detection of the disease is the key to thwart the rampage caused 
by the disease. With the existent diagnostic devices and methodologies, cost of 
diagnosis is high and some are painful due to their invasive nature. This has led us 
to apply non-linear methods for analysis of ECG signals and formulate biomarkers.

Analysis of cardiac signals using fractal analysis has gained sufficient momentum 
over the past few years. In this article the cardiac dynamics of ECG data are explored 
with chaos based non-linear time series analysis techniques -- Hurst exponent and 
Power of scale freeness in Visibility Graph PSVG. The ECG data of normal subjects 
and CHF subjects are taken from Physionet [1] database and analyzed with these 
techniques to calculate values of Hurst Exponent and PSVG.

The Hurst exponent analysis reflects the chaotic behavior of normal and CHF 
patients’ heart and the PSVG parameter can significantly differentiate the CHF 
patients from normal people.

The parameters obtained by the non-linear analysis of ECG signals can be used 
as biomarkers. The biomarkers can be used by clinical laboratories as well as by 
smart phone users. Clinical software or mobile apps implementing the proposed 
method can be used for alarm generation during onset of cardiac abnormalities of 
the CHF patients.
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Excellence) recommended measurement of B-type natriuretic 
peptide (BNP) and ultrasound of heart (echocardiogram) for 
CHF [6]. The American College of Cardiology (ACC) and American 
Heart Association (AHA) identified four stages of heart failure in 
2001 [7]. According to their guideline, patients of stage A are at a 
high risk for developing CHF and patients of stage D are in a critical 
phase and require palliative care. The New York Heart Association 
(NYHA) guideline is also useful for classification of CHF [8].

A statistics published in 2008 shows that health expenditure 
associated with CHF was more than $29 billion in the United 
States alone [9].

An expert clinician can draw a lot of inferences regarding the 
health of the heart from electrocardiography (ECG) signals. 
Analysis of ECG signals is one of the major methods of diagnosis 
of CHF and other heart related problems. And for this reason, the 
study of heart rate dynamics is relevant in this context. Heart rate 
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signal can be described as a periodic signal. The Fourier transform, 
a conventional technique for analysis of periodic signals, has 
been used for this purpose. The Fourier transform, which 
extracts the frequency spectrum from a periodic signal, however 
has some limitations as spurious harmonics are not taken into 
consideration. The transform considers the signal as a stationary 
signal, i.e., it assumes that the properties of the frequencies do 
not change across the entire signal. Also, the Fourier Transform 
requires the time series to be infinite. But heart rate time series 
is non-stationary in nature and collecting infinite heart rate 
signals for processing is not feasible for real time systems. To get 
significant performance, we need to use a suitable method which 
provides better precision and more accurate results with finite 
data points [10].

Some researchers have investigated the chaotic behavior of 
heart rate signals [11-14]. Natural signals like heart rate time 
series contain harmonic components and are non-stationary in 
nature. It can be inferred from the Ref. [15,16] that conventional 
methodologies for non-linear and non-stationary time series 
analysis introduce spurious harmonic components and, are 
therefore insufficient.

In the present investigation we have applied the Power of 
Scale-freeness of a Visibility Graph (PSVG) technique [17,18] 
and Hurst exponent [19] Multi-fractal Detrended Fluctuation 
Analysis (MFDFA) [20] for a quantitative assessment of cardiac 
dysfunction in case of CHF, the results of which are interesting 
and encouraging.

Our paper essentially reports the detailed analysis of heart 
beat time-series data. It was also our aim to propose ideas for 
development of a clinical tool for risk mitigation.

The paper is organized in the following manner. Section 2 
describes our methods adopted in the context of chaos theory. 
Section 3 provides the description and source of the data and the 
analysis carried out on them and finally summarizes the results. 
The paper ends with a discussion and conclusion in 4.

Methods 
Fractals and non-linear methods 
The concept of fractal was introduced by Mandelbrot [21]. 
According to Mandelbrot, fractal is a geometric pattern which 
is repeated across different scales to produce self-similar, 
irregular shapes or surface. Natural objects like snowflakes, 
trees, fern leaves, profile of a mountain etc. are fractals. Because 
magnifying a small portion of a snowflakes, produces similar 
geometrical figure like the snowflakes i.e., they are self-similar. 
Most important property of fractals is repetition of geometric 
pattern across different scales. For this reason, smaller or bigger 
fragments of a fractal system look very similar. This property is 
known as self-similarity. Fractal dimension is a ratio providing 
a statistical index of complexity, comparing how detail a fractal 
pattern changes with the scale. Fractals can be categorized into 
two types: mono fractals and multi fractals. For different regions 
of a fractal system, scaling properties are same for mono fractals. 
But multifractals are more complex in nature. They consist of 
different complicated fractal objects with different non-integer 

dimensions. So, a multifractal system’s scaling property varies 
for different regions. The calculation of fractal dimension that 
is measuring self-similarity is a major area in the field of study 
of chaos. There are several methods that have been proposed 
for measuring Fractal Dimension (FD) like- Spectral Analysis, 
Rescaled Range Analysis, Wavelet Transform Modulus Maxima 
(WTMM), Fluctuation Analysis (FA), Detrended Fluctuation 
Analysis (DFA), Detrended Moving Average (DMA), Multi-fractal 
Detrended Fluctuation Analysis (MF-DFA) and Hurst exponent, 
Power of Scale-freeness of a Visibility Graph (PSVG). In this work, 
we have tried to reflect the non-linearity of heart rate time series 
by PSVG and Hurst exponent methods.

Hurst exponent
The Hurst exponent estimates dimensionless self-similarity of 
a non-linear time series. Hurst exponent estimation originally 
developed for hydrology by Harold Edwin Hurst. Now it is 
established and popular in areas like applied mathematics, non-
linear time series and chaos theory, bio-physics, stock market 
and finance [22,23]. One of the best Hurst exponent estimation 
method suggested by Gloter and Hoffmann [24] is to first estimate 
the energy level of an octave of wavelet transform:

2
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The Hurst exponent   can be estimated from Fractal dimension 
(FD) from the relation:

H=2-FD, where 1<FD<2

The value of H lies in [0,1]. An estimation H>0.5 indicates 
persistent behavior i.e., the time series of long term positive auto 
correlation. Whereas H>0.5 indicates anti-persistent behavior of a 
time series i.e., long-term switching between high and low values 
in adjacent pairs and H=0.5 indicates a completely uncorrelated 
time series. Researchers have shown their interest in estimating 
H from ECG time series Song et al. Ref. [10] proposed a method 
to get information about patient’s emotional state from ECG by 
estimating H. But no work has been published on detecting CHF 
from H estimation to the best of our knowledge.

Visibility graph
Lacasa et al. Ref. [17] presented Visibility Graph to convert a time 
series to a graph. For its simplicity and fast computational power, 
visibility graph method is very useful to convert a fractal time 
series into a scale-free graph and its structure is related to the 
fractality and complexity of the time series. This methodology is 
reliable and already shows its usefulness in the field of medical 
and other domains [11-14]. In this method, each sample of the 
time series is a node of the visibility graph, and an edge between 
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two nodes shows the corresponding time samples that can view 
each other. Suppose Xi is the i

th point of the time series X. Two 
nodes Xm and Xn are connected through a bidirectional edge if and 
only if they satisfy the following condition.

m n
(m j) (X X )m j n

nX X
n m+

− + < + × − − 

Where j Z +∀ ∈  and (n )j m< −

Figure 1 shows an abstraction of converting time series to 
visibility graph. Two nodes Xm and Xn can see each other, if the 
above condition is satisfied. It is clear from the Figure 1 that two 
sequential points of the time series can always see each other. 
This method is valid for non-negative time series. So, there should 
be a proper mechanism to map the time series in positive plane if 
required. According to Graph Theory, number of edges connected 
to node is the degree of that node. Visibility Graph algorithm has 
different type of mapping techniques (time series to graph) for 
different type of time series. Fractal time series is mapped into 
a scale-free graph which is characterized by P(k)=k(-λ), where K is 
the degree of a node,P(k) is the probability distribution of edges 
distributed in nodes of a graph, and 𝜆 is called the power of the 
scale-freeness of visibility graph (PSVG). PSVG or 𝜆 indicates the 
fractality of the time series, and slope of P (k) versus 1/k in a log–
log plane indicates the fractal dimension (FD) of the time series 
[11,17]. Different published works have shown that fractality of 
a time series is reflected by visibility graph and λ [13,14]. The 
present work is devoted to the comparative analysis of the Hurst 
exponent and the Power of Scale-freeness of Visibility Graph 
(PSVG) of ECG data for CHF and normal subjects.

Results 
Data
We have taken two different ECG dataset available in MIT-BIH 
Physionet database [1]. One of them is the BIDMC Congestive 
Heart Failure Database [25]. It includes long-term RR interval 

ECG recordings from 15 subjects (11 men and 4 women) with 
severe congestive heart failure (NYHA class 3-4). Details of 
this CHF database is described in the report Ref. [15] another 
one is The MIT-BIH Normal Sinus Rhythm Database [26]. This 
Normal Sinus Rhythm (NSR) database includes 18 long-term 
ECG recordings from 18 (5 men and 13 women) subjects. More 
detailed description about the data is available in the website. 
We have performed our analysis on these two groups of subjects. 
The subject names as mentioned here are as described in the 
physiobank database [1].

Analysis
We have applied the visibility graph analysis technique and Hurst 
exponent technique in the following way

• Each of the ECG time series is split up for an interval of one 
minute.

• The Hurst exponent (H) and the PSVG parameter λ are estimated 
for each time slice using the methods described in Section 2.

Results
A number of interesting observations are obtained after the 
analysis as described below.

1. The half-hourly mean and standard deviation of Hurst 
exponents (H) for normal subjects is shown in Figure 2.

2. The half-hourly mean and standard deviation of Hurst 
exponents (H) for CHF subjects is shown in Figure 3.

3. The comparison of Hurst exponent (H) for normal and CHF 
subjects with half-hourly mean is plotted in Figure 4.

4. The half-hourly mean and standard deviation of PSVG 
parameters (λ) for normal subjects is shown in Figure 5.

5. The half-hourly mean and standard deviation of λ for CHF 
subjects is shown in Figure 6.

6. The comparison of PSVG parameters (λ) for normal and CHF 
subjects with half-hourly mean is plotted in Figure 7.
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Discussion
Discussion of results
The plot of mean Hurst Exponent together with the SD indicates 
that deviations in Hurst Exponent values from the mean Hurst 
Exponent are significantly small in normal subjects. Hence it can 
be concluded that Hurst Exponent values of normal subjects 
hover around the mean. The Hurst exponent H ≈ 0.5 indicates the 
uncorrelated behavior of the normal heart signals. This indicates 
the chaotic behavior of the heart rate dynamics.

Also plot of mean Hurst Exponent together with the SD for 
diseased subjects indicates that deviations in Hurst Exponent 
values from the mean Hurst Exponent are significantly small in 
them as well.

The average value of Hurst Exponent of diseased subjects trends 
around 0.8 which is well above than that in normal subjects as 
shown in Figure 4. Value of H>0.5 for CHF subjects indicates the 
persistent behavior for diseased heart signals. The behavior of 
normal heart rate time series is more chaotic than the diseased 
hearts. So, H is very efficient to distinguish the ECG time series of 
CHF subjects from the ECG of normal subjects.

The non-linearity or chaotic behavior reflected by H and λ are in 
general a sign of a good health and stable functioning of human 
heart [27]. Small change in heart rate dynamics can be detected 
by the λ parameter [28] as well as by H. The diseased (CHF) heart’s 
ECG is less chaotic than that of the normal heart. Similar analytics 
when applied to ECG time-series of patients with sudden-cardiac 
arrests is also reported in Ref. [29].

• All the PSVG λ parameter values of randomly chosen CHF 
subjects with the mean of half-hourly interval are greater 
than the mean of all normal subjects as shown in Figure 8.

• Increase in H parameter values or λ parameter values 
indicate disorder of the heart and the extent of deviation 
is an indicator of the degree of dysfunction. 

We thereby propose a methodology of raising an alarm for CHF 
subjects according to the behavior of λ, a preview of which can 
be as below

• Collect ECG data from n number of normal subjects: ECG1, 
(ECG)2, (ECG)3 … (ECG)n

• Calculate λi for the normal subjects with one minute split 
up and prepare a bio-maker for normal ECG signals with 
half-hourly mean c.

• Collect the ECG signal from the subject testing for CHF, ECGt 
and calculate half-hourly mean of PSVG parameter λti as 
described above.

• For any λti>λc+ελ where ελ is the tolerance, we can raise an 
alarm for Congestive Heart Failure.

• In a similar manner, increase in Hurst exponent H values 
from a pre-defined normal value may be used to trigger 
alarm for Congestive Heart Failure. 

• Hurst exponent H is used to determine the chaotic behavior 
or nonlinearity of any time series and PSVG parameter 
λ measures the nonlinearity. PSVG parameter λ is more 
effective for determination of anomaly in cardiac behavior 
as PSVG values are an order higher than H parameter 
values and hence difference is easier to detect.

Conclusion 
The Η and λ values reflect the chaotic behavior of heart rate 
signals. Computational values of Η and λ parameters from ECG 
data may be put to use in the following ways:
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• This method can be implemented in any Java based devices 
as well as in mobile apps. One requires to have pre-computed 
biomarkers for healthy hearts and they can perform self-checkup 
from their ECG data. 

• CHF patient can check the improvement of the heart periodically 
with lifestyle modification and medication. 

• It is low cost and non-invasive detection for CHF.

In short the present analysis distinctively indicates the use of 
the parameter Η and λ in the analysis of cardiac data for CHF 
subjects, and can serve as a novel and useful clinical tool for risk 
stratification.
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