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Background
Bacterial infection on the surface of fresh meats and produce after 
processing is currently one of the largest problems within this 
industry. Bacteria that cause most foodborne illness and include, 
but are not limited to, shiga toxin producing Escherichia coli (E. 
coli) and Salmonella typhimurium (S. typhimurium) [1,2]. Not only 
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Abstract
Objective: Quaternary ammonium compounds (QACs) are surfactants that are 
made of at least one cationic nitrogen attached to a variety of different side groups, 
usually consisting of one or more hydrophobic chains. These compounds are 
generally used for surface decontamination, oral hygiene, and recently in carcass 
preservation. Recently there have been many studies that have implicated QACs 
in the development of resistance in bacteria as well as harmful environmental 
effects. One compound in particular, cetylpyridinium chloride (CPC), has recently 
gained acceptance as a safe and practical method for use in consumable raw 
poultry product decontamination. This compound is highly lipophilic and leaves a 
residue that is potentially toxic to consumers and the environment if not properly 
removed.

Methods:  Using computational methods, we propose the use of quantitative 
structure-activity relation (QSAR) analysis to determine the antimicrobial effects 
of novel and untested QACs and QAC-like, structures for further testing. 

Results: We developed a consensus model with an R2 and a slope of 0.98, which 
shows good linear structure of its predictions of minimum inhibitory concentration 
(MIC). This model was validated by prediction of known antimicrobial data of 
QACs. Similar compounds to CPC were collected and their antimicrobial effects 
were predicted by this model. Many of these compounds were detected as 
possible antimicrobials. 

Conclusion: This study has identified several promising antimicrobial compounds 
worth of further study. By diversifying the available QACs we hope to develop 
better disinfectants, create more environmentally friendly compounds, and help 
to stall, or even halt, the development of antimicrobial resistance.

Keywords: Quantitative structure activity relations; Chemoinformatics; 
Disinfectant; Cetylpyridinium chloride; Quaternary ammonium compounds; 
Antimicrobial; Minimum inhibitory concentration; Computational chemistry; 
Surfactant
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do these bacteria cause disease, but also spoilage. It is estimated 
that in 2010 the United States of America threw out 133 billion 
pounds of food, mostly due to spoilage [3]. These bacteria cannot 
be removed by simple water spraying implemented by most 
processing facilities [4]. As such, many technologies have been 
developed to combat bacteria on the surface of food products. 
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These technologies involve the use of chlorine, chlorine dioxide, 
Salimide, ozone, and cetylpyridinium chloride [5-9].

Unfortunately, the current technologies being used to remove 
bacteria from these surfaces suffer from a variety of issues: 
high cost, hazardous byproducts, environmental hazards, and 
the discoloration of products [9,10]. This study focuses on the 
use of cetylpyridinium chloride (CPC) for decontamination. CPC 
is an effective antimicrobial, it has been approved only for use 
on raw chicken, although it has also shown effectiveness for use 
on beef and produce for both disinfection and the extension of 
shelf life [11-13]. CPC is classified as a quaternary ammonium 
compound (QAC), which is defined by its cationic nitrogen head. 
Generally QACs work as antimicrobials by disrupting cell walls 
and membranes with hydrophobic tails. These tails pinch off 
sections in small vesicle-like structures and cause cell leakage 
that eventually leads to cell death [14-16]. CPC follows this same 
mechanism along with evidence of other more specific targets 
including transferrin denaturation, ionic channel blocking, and 
knock-down of halitosis specific transcription factors [14,17,18].

It does, however, have its own flaws. CPC is an environmental 
hazard and leaves a toxic residue on surfaces [13,19]. This residue 
is dissolved and subsequently removed using propylene glycol 
(PEG) as a cosolvent with water. Unfortunately, this adds to the cost 
and complicates the safe disposal of CPC [20]. Environmentally, 
the disposal of CPC is a major concerning factor. CPC is naturally 
broken down by bacteria, but in higher concentrations it kills the 
bacteria before it can be processed. In aquatic environments 
residual CPC causes a decrease in microflora and in algae blooms. 
This decrease causes a trophic cascade, negatively impacting all 
organisms in the local community [21]. The remnants of CPC in 
the environment can also propagate antimicrobial resistance in 
the local microbial communities, which can also have a lasting 
impact [22]. In humans, QACs taken orally in high doses (100-
400 mg/kg) have shown detrimental effects including mucosal 
necrosis, hemorrhaging, formation of ulcers, and severe liver, 
kidney, and heart changes [23,24]. CPC in particular has been 
shown to cause liver and kidney vacuolization as well as paralysis 
when given orally to rats and rabbits [25].

Discovery of novel drugs is typically limited by the funds available 
and the precise knowledge of drug targets. Due to the nonspecific 
nature of CPC and imprecise library screening methods, our lab 
turned to qualitative structure activity relationships (QSAR). QSAR 
allows for the recoding of molecular structures to quantifiable 
forms which are then correlated to a specific biological activity. 
This model can then be used to predict the biological activity of 
untested structures [26]. The bioactivity that we wish to study is 
the minimum inhibitory concentration (MIC), which is a measure 
of the effectiveness of an antimicrobial. A lower MIC denotes 
a more effective compound. Using this method we hope to 
discover potential structures that could function as well as CPC, 
with reduced or nonexistent negative effects on the human body 
and the environment.

Methods
Data collection
Three sections of data were collected via literature searches (1) a 
model building set, (2) a validation set, and (3) a prediction set of 

compounds [27-29]. The model building set was based on known 
QACs with data on the MIC of these compounds against E. coli. 
Contained within the validation set were known QACs that were 
not used for the model building set. Compounds for the prediction 
set were collected from a substructure search on Pubchem using 
CPC as a reference. The top 1000 compounds sorted by relevance 
were selected for further testing.

Descriptor calculation
All descriptors for the model building set (Supplemental Data 1), 
the validation set (Supplemental Data 2), and the prediction set 
(Supplemental Data 3) were calculated simultaneously using the 
ochem.eu chemical database [30]. Using the tools on this site, the 
structures were cleaned by removing the salts associated with 
each compound. Under the models tab, calculate descriptors 
program was selected and the SMILES string for each compound 
was uploaded in an Excel file (.xls). These SMILES were used to 
calculate descriptors through this database. The descriptors that 
were selected are the following: E-state (all but extended indices), 
ALogPS, GSFragments, ISIDA fragments (from 2-15 in order 
to cover long carbon chains), and QNPR. These were selected 
due to a large number of compounds encountering errors 
during 3D structure calculations. Unless noted, all descriptors 
were left at the default settings. This totaled 1356 descriptors 
for each compound. The descriptors and the chemID’s were 
then downloaded as a .cvs file ignoring any compounds that 
encountered an error. The model building set and the validation 
set had no errors and 163 compounds were removed from the 
prediction set due to errors in calculation.

Data preprocessing
After the descriptors were calculated, all data were normalized 
through the Normalize Data (v.1.0) tool developed by the Roy 
lab [31]. This is a Java program that requires a .csv file of the 
descriptors. The model building set data was then split into a test 
(15%) and training set (85%) via the Data set Division GUI (v.1.2) 
also developed by the Roy labs [32,33] (http://teqip.jdvu.ac.in/
QSAR_Tools/#ADInHouse).

QSARINS model calculation
Using QSARINS, an open source QSAR modeling software utilizing 
multiple linear regression (MLR), was used to create the QSAR 
model and to generate each prediction [34,35]. First, the model 
building set was altered to fit the QSARINS format. The MIC 
was then added to the descriptors column and the test and 
training sets were combined into a single file where each was 
given a numerical identifier (1 for training set, 2 for test set) 
in the last column of the file. This was saved as a .txt file. The 
software was run according to the protocol listed in the manual. 
We used their internal filters to remove all descriptors that had 
<80% consistency throughout the data set, or that were <95% 
correlated. The genetic algorithm was run for combinations of up 
to 130 descriptors based on the Q2loo. 840 models were created, 
using QSARINS available validation data. An arbitrary cutoff of 
R2>0.75, R2-Q2<0.10 (both loss of one and loss of many), and |Q2 - 
Y-scramble| > 0.50 was used. Twelve models were left for further 
validation. Predictions for the prediction set and the validation 
set were performed using the built-in tool. (http://www.qsar.it/).
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Results
Model validation
In order to find a new chemical to treat meat surfaces, we 
performed a literature search for current QACs and their 
respective MIC against E. coli [27-29]. The compounds that we 
found had at least one cationic nitrogen and a carbon chain. 
Other commonly identified structures include nitrogen, oxygen, 
benzene rings, and even barium in one compound. Activities of 
these compounds range from an MIC of 1.88 μg/ml to 12800 
μg/ml. Using all available literature data on the antimicrobial 
activity of currently available QACs on E. coli represented by 
the log of the MIC, we developed 840 potential models using 
the QSARINS software. QSARINS systematically uses optimized 
descriptors to build models starting at 1 descriptor and building 
more complex models using a genetic algorithm (GA). The GA 
organizes the descriptors into genes in a chromosome and then 
other descriptors are substituted into this chromosome. This 
continues with a constant mutation rate for 500 generations. At 
the end of these generations each chromosome is used to create 
an MLR based QSAR model. The top five models (determined by 
the Q2loo) are kept for each iteration. The number of descriptors 
is increased as time progresses and more calculations are done. 
Due to computing limitations, this process was stopped at 130 
descriptors, although most optimal models had fewer than eight 
descriptors. The top models had some descriptors in common, or 
at least very similar fragments. The H-C-O structure fragment was 
seen in 10 of the top 12 models. We organized these descriptors 
into four categories to explain the importance of certain types 
of descriptors for this model calculation: (1) short fragments 
(specific fragments of five atoms or less), (2) long fragments 
(specific fragments of more than five atoms), (3) non-specific 
fragments (fragments with general patterns and not specific 
structural identities, examples include C*C*N:(Fragmentor) in 
which “*” could be any atom), and (4) log of the lipophilicity 
which was calculated by A*log(PS) (Table 1).

In order to select the best potential models from the 840 
potential models, a general filter of R2>0.75, R2 - Q2<0.10, and |Q2 
- Y-scramble| >0.50 was used to reduce the list to 12 potential 
models based on internal validation calculations done with the 
QSARINS software (Table 2). The majority of compounds were 
removed due to the R2 - Q2 filter. An external testing dataset was 
then predicted by the model in order to perform an external 
validation. For this study we focused on the general prediction 
ranking (R2) and the specific accuracy of our prediction (percent 
error). These were calculated and are displayed in Table 3. It 
is typical in the QSAR community to rely more on the general 
predictive ranking than to rely on accuracy alone, as these 

predictions will be used for filtering a larger list for experimental 
validation rather than for direct prediction [36]. Many of the 
models were very similar in their validations, therefore the most 
optimal model, 81, was selected to provide an example of the 
internal and external regressions (Figures 1 and 2).

Many studies have pointed to the effectiveness of using a 
consensus model for increasing the accuracy of the prediction 
of unknown models, rather than using a single model [36,37]. 
Using the twelve previously identified models, we averaged 
the predictions on the validation set to develop three different 
consensus models (Table 2 and Figure 3). One model was created 
from all available models. The second was made by selected 
models that had a R2>0.9 and an average error <20%. The third 
consensus was formed by removing model 65. This model had 
the worst external validations with an R2 of 0.19 and an average 
error of 72%. These consensus models generally had lower error 
and higher R2 than the single models. The removal of lesser 
models or the single worst model did not improve the accuracy 
of the consensus. From the validation data we determined that 
the consensus model made from all the available models, as 
previously described, would be the preliminary optimized model 
to use for predictions of unknown compounds. 

Model ID Variables
Short Fragments 20
Long Fragments 10

Non-specific Fragments 20
Log(lipophilicity) 4

Table 1 Classification of Descriptors used in prediction calculation.

Model ID Variables R2 R2-Q2
loo

94 7 0.838 0.0802
82 5 0.8116 0.0659
81 5 0.8024 0.0713
72 4 0.7933 0.0741
70 4 0.7929 0.0813
75 5 0.789 0.079
69 4 0.7877 0.0816
67 4 0.7656 0.0713
63 4 0.7651 0.0765
66 4 0.76 0.0681
64 4 0.7585 0.0685
65 4 0.7576 0.0675

Table 2 Internal Validation of Select 12 QSAR models.

Model ID Average % Error R2

94 14% 0.8917
82 14% 0.9274
81 11% 0.9578
72 24% 0.8804
70 22% 0.8828
75 19% 0.8566
69 25% 0.8081
67 18% 0.9101
63 16% 0.9242
66 20% 0.8772
64 14% 0.9254
65 72% 0.1967

Consensus (all) 9% 0.971
Consensus (selected) 10% 0.9439

Consensus (worst removed) 13% 0.9315

Table 3 External Validation of Select 13 QSAR models.
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Find training set, validation set,
and unknown set.

(Various literature searches and 
Pubchem)

Systematically remove and test
each compund using the 
correlations of the other

compounds
(QSARINS)

Calculate descriptors for each
compound
(Ochem.eu)

Normalize data and split into
test and training sets

(normalizeData & 
DatasetDivisionGUI)

Correlate descriptors with MIC
of each compound

(QSARINS)

Predict MIC for non-training set
compounds
(QSARINS)

Generate measured vs predicted
curve

(QSARINS)
   

Flow chart of the QSAR building process, with software used at each step.Figure  1
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Figure 2 The top QSAR model based on the R2 values for the predictions of the external validation set. A) Model 81 training and 
prediction set regression, the training set is in yellow and the prediction is in blue. B) Model 81 external validation regression, the 
R2 is displayed on the graph.
Figure  2 The top QSAR model based on the R2 values for the predictions of the external validation set. A) 

Model 81 training and prediction set regression, the training set is in yellow and the prediction 
is in blue. B) Model 81 external validation regression, the R2 is displayed on the graph.
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Compound Predicted MIC (μg/ml) Compound Predicted MIC (μg/ml)

0.969267 1.077558

1.016167 1.083292

1.016167 1.097142

1.043917 1.101175

1.071908 1.118575

Table 4 Top 10 potential compounds, determined by predicted MIC.
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Predictions for unknown compounds
The purpose of creating a QSAR model is to apply it to previously 
unstudied compounds with unknown biological activities. We 
collected a list of 1000 compounds from PubChem that had 
substructure similar to CPC [38]. By using the consensus model, 
the top 10 compounds in terms of MIC against E. coli were 
identified. Compounds that were in the applicability domain for at 
least 75% of the models within the consensus were included in the 
final list. This left us with 39 compounds. These compounds, their 
structures, and their predicted activities are shown in Table 4.

Discussion
Using literature values, a QSAR model was developed in order to 
predict the MIC of potential compounds that could be used to 
combat bacteria on the surface of food during processing. Our 
model was based on 47 compounds with available literature values 
with recorded MIC values against E. coli, collected across three 
different studies to increase the variation of structures and MIC 
values. Using the built in GA the best descriptors and the optimal 
number of descriptors were selected to avoid overtraining of the 
model. Some may argue that only using up to 130 descriptors 
could be a detriment to our study but, any calculations done with 
more than 15 variables there was a significant decrease in Q2 
leading us to believe that overtraining had occurred beyond that 
point.

Now that we have a viable QSAR model of MIC and preliminary 
predictions for almost 900 structures, we plan to experimentally 
validate the predicted MIC. After this validation our lab will focus 

on creating two more models 1) one to predict the environmental 
degradation of these compounds and 2) one that would predict 
the amount of residue that would be left on different food 
products when the compounds are used for sterilization. These 
steps will help us to discover a safer compound from the list of 
potential compounds.

Disinfectants in the food industry are incredibly important 
for the reduction of spoilage causing bacteria as well as those 
that can cause disease. Unfortunately, current techniques have 
many issues. One compound that is efficient in both cost and 
in antibacterial action is CPC, but the remaining residue must 
be removed or the products could become toxic. In order to 
find a comparable compound without the toxic residue, our lab 
developed a QSAR model that could predict the antimicrobial 
activity of potential compounds before experimental testing. 
This model will allow us and other labs to save money and time 
by specifically testing compounds that have predicted efficacy 
for antimicrobial behavior. By developing and testing new 
antimicrobial QACs we hope to not only reduce the bacteria on 
the surface of food in a safe manner, but also reduce the amount 
of antimicrobial damage to the local environment. With the 
addition of new QACs we also expect to help combat the rise in 
antibiotic/antimicrobial resistant bacteria.
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